Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
distinct from well-characterized electron transport chain
disruption. While currently unknown, this additional mode(s) of
action makes the scaffold desirable for further development to
target drug resistant Plasmodium parasites.
A, 2012, 109, 8298-8303.
DOI: 10.1039/C9CC01689A
13
G. L. Nixon, C. Pidathala, A. E. Shone, T. Antoine, N. Fisher,
P. M. O'Neill, S. A. Ward and G. A. Biagini, Future Med
Chem, 2013, 5, 1573-1591.
Access to new structural diversity is one of the most promising 14
strategies against the uprising of drug resistance in protozoan
pathogens like Plasmodium or Toxoplasma. Besides modification
of already existing scaffolds, the innovation of skeletal diversity is
arguably the most important principle for generating biological
W. D. Hong, P. D. Gibbons, S. C. Leung, R. Amewu, P. A.
Stocks, A. Stachulski, P. Horta, M. L. S. Cristiano, A. E.
Shone, D. Moss, A. Ardrey, R. Sharma, A. J. Warman, P. T.
P. Bedingfield, N. E. Fisher, G. Aljayyoussi, S. Mead, M.
Caws, N. G. Berry, S. A. Ward, G. A. Biagini, P. M. O'Neill
and G. L. Nixon, J Med Chem, 2017, 60, 3703-3726.
G. Höfle, B. Boohlendorf, T. Fecker, F. Sasse and B. Kunze,
J Nat Prod, 2008, 71, 1967-1969.
activity.32, 33 Naturally produced 2-alkyl-4-quinolone and their
15
N-oxides comprise general activity against protozoa with
position 1 and 2 as convenient and flexible modification sites.
Using a catalyst-free, tandem cyclization reaction we optimized
the chemoselective synthetic accessibility of novel tricyclic
16
L. K. Basco, S. Mitaku, A. L. Skaltsounis, N.
Ravelomanantsoa, F. Tillequin, M. Koch and J. Le Bras,
Antimicrob Agents Chemother, 1994, 38, 1169-1171.
G. A. Biagini, N. Fisher, N. Berry, P. A. Stocks, B. Meunier,
D. P. Williams, R. Bonar-Law, P. G. Bray, A. Owen, P. M.
O'Neill and S. A. Ward, Mol Pharmacol, 2008, 73, 1347-
1355.
D. F. Harvey and D. M. Sigano, Chemical Reviews, 1996,
96, 271-288.
S. Mehta, J. P. Waldo and R. C. Larock, J Org Chem, 2009,
74, 1141-1147.
A. Wube, J. D. Guzman, A. Hufner, C. Hochfellner, M.
Blunder, R. Bauer, S. Gibbons, S. Bhakta and F. Bucar,
Molecules, 2012, 17, 8217-8240.
G. M. Coppola, J Heterocyclic Chem, 1985, 22, 491-494.
J. Pedron, C. Boudot, S. Bourgeade-Delmas, A. Sournia-
Saquet, L. Paloque, M. Rastegari, M. Abdoulaye, H. El-
Kashef, C. Bonduelle, G. Pratviel, S. Wyllie, A. H. Fairlamb,
B. Courtioux, P. Verhaeghe and A. Valentin,
ChemMedChem, 2018, 13, 2217-2228.
pyrrolo[1,2-a]quinolin-5-one scaffolds that exhibit promising new
17
skeletal features for drug development.
Conflicts of interest
There are no conflicts to declare.
18
19
20
Acknowledgements
We are grateful to Prof. Dr. Andreas Marx and his group for their
generous support. This work was funded by the Emmy Noether
program (DFG), EU FP7 Marie Curie ZIF, Fonds der Chemischen
Industrie, the NIH DP2AI138239 (ERD) and a KoRS-CB PhD
fellowship (DS). We thank Laetitia Arnold for support in organic
synthesis and Prof. Dr. Tanja Gaich for helpful discussions.
21
22
Notes and references
23
24
I. Aillaud, E. Bossharth, D. Conreaux, P. Desbordes, N.
Monteiro and G. Balme, Org Lett, 2006, 8, 1113-1116.
J. D. Wansi, H. Hussain, A. T. Tcho, S. F. Kouam, S. Specht,
S. R. Sarite, A. Hoerauf and K. Krohn, Phytother Res, 2010,
24, 775-777.
J. P. Michael, C. B. deKoning and T. V. Stanbury,
Tetrahedron Letters, 1996, 37, 9403-9406.
P. Q. Huang and T. Fan, European Journal of Organic
Chemistry, 2017, DOI: 10.1002/ejoc.201701060, 6369-
6374.
D. Audisio, S. Messaoudi, J. F. Peyrat, J. D. Brion and M.
Alami, J Org Chem, 2011, 76, 4995-5005.
J. Huang, Y. Chen, A. O. King, M. Dilmeghani, R. D. Larsen
and M. M. Faul, Org Lett, 2008, 10, 2609-2612.
E. R. Derbyshire, M. Prudencio, M. M. Mota and J. Clardy,
Proc Natl Acad Sci U S A, 2012, 109, 8511-8516.
R. Raphemot, M. J. Lafuente-Monasterio, F. J. Gamo-
Benito, J. Clardy and E. R. Derbyshire, Antimicrob Agents
Chemother, 2015, 60, 1430-1437.
T. G. Nam, C. W. McNamara, S. Bopp, N. V. Dharia, S.
Meister, G. M. Bonamy, D. M. Plouffe, N. Kato, S.
McCormack, B. Bursulaya, H. Ke, A. B. Vaidya, P. G. Schultz
and E. A. Winzeler, ACS Chem Biol, 2011, 6, 1214-1222.
W. R. Galloway, A. Isidro-Llobet and D. R. Spring, Nat
Commun, 2010, 1, 80.
1
S. Heeb, M. P. Fletcher, S. R. Chhabra, S. P. Diggle, P.
Williams and M. Camara, FEMS Microbiol Rev, 2011, 35,
247-274.
2
3
E. Fernandez-Alvaro, W. D. Hong, G. L. Nixon, P. M. O'Neill
and F. Calderon, J Med Chem, 2016, 59, 5587-5603.
X. M. Chu, C. Wang, W. Liu, L. L. Liang, K. K. Gong, C. Y.
Zhao and K. L. Sun, Eur J Med Chem, 2019, 161, 101-117.
D. Szamosvári and T. Böttcher, Synlett, 2018, 29, 542-547.
P. C. Appelbaum and P. A. Hunter, Int J Antimicrob Agents,
2000, 16, 5-15.
25
26
4
5
27
28
29
30
6
7
8
9
K. Kaur, M. Jain, R. P. Reddy and R. Jain, Eur J Med Chem,
2010, 45, 3245-3264.
Y. L. Fan, X. W. Cheng, J. B. Wu, M. Liu, F. Z. Zhang, Z. Xu
and L. S. Feng, Eur J Med Chem, 2018, 146, 1-14.
D. Szamosvári and T. Böttcher, Angew Chem Int Ed Engl,
2017, 56, 7271-7275.
A. Saleh, J. Friesen, S. Baumeister, U. Gross and W. Bohne,
Antimicrob Agents Chemother, 2007, 51, 1217-1222.
L. F. Tietze and L. Ma, Heterocycles, 2010, 82, 377-396
S. S. Lin, S. Kerscher, A. Saleh, U. Brandt, U. Gross and W.
Bohne, Biochim Biophys Acta, 2008, 1777, 1455-1462.
G. A. Biagini, N. Fisher, A. E. Shone, M. A. Mubaraki, A.
Srivastava, A. Hill, T. Antoine, A. J. Warman, J. Davies, C.
Pidathala, R. K. Amewu, S. C. Leung, R. Sharma, P.
Gibbons, D. W. Hong, B. Pacorel, A. S. Lawrenson, S.
Charoensutthivarakul, L. Taylor, O. Berger, A. Mbekeani,
P. A. Stocks, G. L. Nixon, J. Chadwick, J. Hemingway, M. J.
Delves, R. E. Sinden, A. M. Zeeman, C. H. Kocken, N. G.
31
10
11
12
32
33
F. J. Gamo, L. M. Sanz, J. Vidal, C. de Cozar, E. Alvarez, J. L.
Lavandera, D. E. Vanderwall, D. V. Green, V. Kumar, S.
Hasan, J. R. Brown, C. E. Peishoff, L. R. Cardon and J. F.
Garcia-Bustos, Nature, 2010, 465, 305-310.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins