5 X.-L. Sun, C. L. Stabler, C. S. Cazalis and E. L. Chaikof,
Bioconjugate Chem., 2005, 17, 52–57.
6 S. Arumugam and V. V. Popik, J. Am. Chem. Soc., 2011, 133, 15730–
15736.
size-dependent exclusion inherent to polymer brush systems. This
work is currently underway.
7 C. Hoyle, T. Lee and T. Roper, J. Polym. Sci., Part A: Polym. Chem.,
2004, 42, 5301–5338.
Conclusions
8 C. E. Hoyle, A. B. Lowe and C. N. Bowman, Chem. Soc. Rev., 2010,
39, 1355–1387.
9 C. E. Hoyle and C. N. Bowman, Angew. Chem., Int. Ed., 2010, 49,
1540–1573.
10 A. B. Lowe, C. E. Hoyle and C. N. Bowman, J. Mater. Chem., 2010,
20, 4745–4750.
11 D. Kessler, K. Nilles and P. Theato, J. Mater. Chem., 2009, 19, 8184–
8189.
In summary, we successfully demonstrated a versatile post-poly-
merization modification strategy to synthesize multifunctional
polymer brush surfaces via combination of surface-initiated pho-
topolymerization and orthogonal thiol-click reactions, namely the
base-catalyzed thiol-isocyanate, thiol-epoxy, or thiol-bromo
reactions in sequential combination with the radical-mediated
thiol-yne reaction. Initially, the applicability of the radical-medi-
ated thiol-yne reaction was extended to include one-pot statistical
co-click reactions of brush pendant alkyne groups with multiple
thiols. This simple one-pot approach was successfully applied to
various mixtures of thiols including a combination of thioglycerol
and dodecanethiol, which bestow hydrophilic hydroxyl and
hydrophobic aliphatic groups to the polymer brush, respectively,
and a combination of N-acetyl-cysteine and dodecanethiol to form
a modelpolymercoatingwitha biologicallyrelevantmolecule. The
one-pot approach was also shown to be easily extendable to
a mixture of three thiols. The ability to control the surface
properties (hydrophilicity in this work) by facile control over
relative concentration of thiols in a thiol mixture also exhibits the
robustness and versatility of the one-pot approach. Additionally,
sequential and orthogonal thiol-click reactions were successfully
applied to synthesize dual-functional polymer brushes by post-
polymerization modification of p(NCOMA-stat-PgMA),
p(GMA-stat-PgMA) and p(BrMA-stat-PgMA) via nucleophile-
mediated thiol-isocyanate, thiol-epoxy or thiol-bromo, respec-
tively, in combination with radical-mediated thiol-yne reactions.
Generally, the base-catalyzed reactions were conducted first, and
were observed to have no effect on the alkyne groups, which
enabled the sequential thiol-yne reaction. In this case, surface
properties were tailored by controlling the relative concentrations
of monomers in the monomer feed during the SIP, which in turn
dictates the composition of the thiol-clicked surface. While we
demonstrated our strategy with model and commercially available
thiols, we fully expect that this approach will be extended to
fabrication of multiplexed biomolecules, i.e. proteins, DNA
strands, antibodies, as well as the fabrication of complex polymer
brush architectures, i.e. mixed and block copolymer brushes.
€
12 H. Murata, O. Prucker and J. Ruhe, Macromolecules, 2007, 40, 5497–5503.
13 S. V. Orski, K. H. Fries, G. R. Sheppard and J. Locklin, Langmuir,
2010, 26, 2136–2143.
€
14 R. K. Iha, K. L. Wooley, A. M. Nystrom, D. J. Burke, M. J. Kade and
C. J. Hawker, Chem. Rev., 2009, 109, 5620–5686.
15 K. L. Christman, E. Schopf, R. M. Broyer, R. C. Li, Y. Chen and
H. D. Maynard, J. Am. Chem. Soc., 2008, 131, 521–527.
16 G. A. Hudalla and W. L. Murphy, Langmuir, 2010, 26, 6449–6456.
17 S. Im, K. Bong, B.-S. Kim, S. Baxamusa, P. Hammond, P. Doyle and
K. Gleason, J. Am. Chem. Soc., 2008, 130, 14424–14425.
18 J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang,
I. A. Miller, A. Lo, J. A. Codelli and C. R. Bertozzi, Proc. Natl. Acad.
Sci. U. S. A., 2007, 104, 16793–16797.
19 J. C. Jewett, E. M. Sletten and C. R. Bertozzi, J. Am. Chem. Soc.,
2010, 132, 3688–3690.
20 R. Manova, T. A. van Beek and H. Zuilhof, Angew. Chem., Int. Ed.,
2011, 50, 5428–5430.
21 A. Kuzmin, A. Poloukhtine, M. A. Wolfert and V. V. Popik,
Bioconjugate Chem., 2010, 21, 2076–2085.
22 S. V. Orski, A. A. Poloukhtine, S. Arumugam, L. Mao, V. V. Popik
and J. Locklin, J. Am. Chem. Soc., 2010, 132, 11024–11026.
23 X. Deng, C. Friedmann and J. Lahann, Angew. Chem., Int. Ed., 2011,
50, 6522–6526.
24 B. J. Sparks, J. G. Ray, D. A. Savin, C. M. Stafford and D. L. Patton,
Chem. Commun., 2011, 47, 6245–6247.
25 T. Cai, R. Wang, K. G. Neoh and E. T. Kang, Polym. Chem., 2011, 2,
1849–1858.
26 P. Jonkheijm, D. Weinrich, M. Koehn, H. Engelkamp,
P. Christianen, J. Kuhlmann, J. Maan, D. Nuesse, H. Schroeder,
R. Wacker, R. Breinbauer, C. Niemeyer and H. Waldmann, Angew.
Chem., Int. Ed., 2008, 47, 4421.
27 C. Wendeln, S. Rinnen, C. Schulz, H. F. Arlinghaus and B. J. Ravoo,
Langmuir, 2010, 26, 15966–15971.
28 M. Li, P. De, H. Li and B. S. Sumerlin, Polym. Chem., 2010, 1, 854–
859.
29 R. M. Hensarling, V. A. Doughty, J. W. Chan and D. L. Patton, J.
Am. Chem. Soc., 2009, 131, 14673–14675.
30 C. Wang, P. F. Ren, X. J. Huang, J. Wu and Z. K. Xu, Chem.
Commun., 2011, 47, 3930–3932.
31 Y. Huang, Y. Zeng, J. Yang, Z. Zeng, F. Zhu and X. Chen, Chem.
Commun., 2011, 47, 7509–7511.
32 D. Konkolewicz, S. Gaillard, A. G. West, Y. Y. Cheng, A. Gray-
Weale, T. W. Schmidt, S. P. Nolan and S. Perrier, Organometallics,
2011, 30, 1315–1318.
33 S. S. Naik, J. W. Chan, C. Comer, C. E. Hoyle and D. A. Savin,
Polym. Chem., 2011, 2, 303–305.
34 R. M. Hensarling, S. B. Rahane, A. P. LeBlanc, B. J. Sparks,
E. M. White, J. Locklin and D. L. Patton, Polym. Chem., 2011, 2,
88–90.
35 H. Li, B. Yu, H. Matsushima, C. E. Hoyle and A. B. Lowe,
Macromolecules, 2009, 42, 6537–6542.
Acknowledgements
This work was supported in part by NSF CAREER (DMR-
1056817) and the Office of Naval Research (Award N00014-07-
1-1057). RMH acknowledges fellowship support from the U.S.
Department of Education GAANN program (Award
#P200A090066).
36 J. W. Chan, C. E. Hoyle and A. B. Lowe, J. Am. Chem. Soc., 2009,
131, 5751–5753.
References
€
37 R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux,
1 C. Sanchez, H. Arribart and M. M. Giraud Guille, Nat. Mater., 2005,
4, 277–288.
2 C. Hartmuth, M. Finn and B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004–2021.
S. Tugulu and H. A. Klok, Chem. Rev., 2009, 109, 5437–5527.
38 M. A. Harvison, T. P. Davis and A. B. Lowe, Polym. Chem., 2011, 2,
1347–1354.
39 B. M. Rosen, G. Lligadas, C. Hahn and V. Percec, J. Polym. Sci., Part
A: Polym. Chem., 2009, 47, 3931–3939.
3 L. Nebhani and C. Barner-Kowollik, Adv. Mater., 2009, 21, 3442–
3468.
40 B. M. Rosen, G. Lligadas, C. Hahn and V. Percec, J. Polym. Sci., Part
A: Polym. Chem., 2009, 47, 3940–3948.
4 P. T. Dirlam, G. A. Strange, J. A. Orlicki, E. D. Wetzel and
P. J. Costanzo, Langmuir, 2009, 26, 3942–3948.
942 | J. Mater. Chem., 2012, 22, 932–943
This journal is ª The Royal Society of Chemistry 2012