Biochemistry
Article
Funding
(13) Tsang, W.-Y., Wood, B. M., Wong, F. M., Wu, W., Gerlt, J. A.,
Amyes, T. L., and Richard, J. P. (2012) Proton Transfer from C-6 of
Uridine 5′-Monophosphate Catalyzed by Orotidine 5′-Monophos-
phate Decarboxylase: Formation and Stability of a Vinyl Carbanion
Intermediate and the Effect of a 5-Fluoro Substituent. J. Am. Chem.
Soc. 134, 14580−14594.
This work was supported by Grants GM 039754 to J.P.R. and
GM 065155 to J.A.G. from the National Institutes of Health.
Notes
The authors declare no competing financial interest.
(14) Amyes, T. L., Wood, B. M., Chan, K., Gerlt, J. A., and Richard, J.
P. (2008) Formation and Stability of a Vinyl Carbanion at the Active
ABBREVIATIONS
■
Site of Orotidine 5′-Monophosphate Decarboxylase: pK of the C-6
a
ScOMPDC, orotidine 5′-monophosphate decarboxylase from S.
cerevisiae; PRPP synthase, phosphoribosylpyrophosphate syn-
thase; ORTase, orotate phosphoribosyl transferase; TIM,
triosephosphate isomerase; OMP, orotidine 5′-monophos-
phate; UMP, uridine 5′-monophosphate; FOMP, 5-fluoroor-
otidine 5′-monophosphate; FUMP, 5-fluorouridine 5′-mono-
phosphate; h-FUMP, FUMP labeled with hydrogen at C-6; d-
FUMP, FUMP labeled with deuterium at C-6; BMP, 6-
hydroxyuridine 5′-monophosphate; EO, 1-(β-D -
erythrofuranosyl)orotic acid; EU, 1-(β-D-erythrofuranosyl)-
uracil; FEO, 1-(β-D-erythrofuranosyl)-5-fluoroorotic acid;
Proton of Enzyme-Bound UMP. J. Am. Chem. Soc. 130, 1574−1575.
(15) Chan, K. K., Wood, B. M., Fedorov, A. A., Fedorov, E. V., Imker,
H. J., Amyes, T. L., Richard, J. P., Almo, S. C., and Gerlt, J. A. (2009)
Mechanism of the Orotidine 5′-Monophosphate Decarboxylase-
Catalyzed Reaction: Evidence for Substrate Destabilization. Biochem-
istry 48, 5518−5531.
(16) Toth, K., Amyes, T. L., Wood, B. M., Chan, K., Gerlt, J. A., and
Richard, J. P. (2010) Product Deuterium Isotope Effects for Orotidine
5
′-Monophosphate Decarboxylase: Effect of Changing Substrate and
Enzyme Structure on the Partitioning of the Vinyl Carbanion Reaction
Intermediate. J. Am. Chem. Soc. 132, 7018−7024.
(17) Toth, K., Amyes, T. L., Wood, B. M., Chan, K., Gerlt, J. A., and
+
FEU, 1-(β-D-erythrofuranosyl)-5-fluorouracil; Gua , guanidi-
nium cation; GA, glycolaldehyde; MOPS, 3-(N-morpholino)-
propanesulfonic acid; NMR, nuclear magnetic resonance
Richard, J. P. (2007) Product Deuterium Isotope Effect for Orotidine
′-Monophosphate Decarboxylase: Evidence for the Existence of a
Short-Lived Carbanion Intermediate. J. Am. Chem. Soc. 129, 12946−
2947.
18) Amyes, T. L., Richard, J. P., and Tait, J. J. (2005) Activation of
5
1
(
REFERENCES
■
orotidine 5′-monophosphate decarboxylase by phosphite dianion: The
(
1) Radzicka, A., and Wolfenden, R. (1995) A proficient enzyme.
Science 267, 90−93.
2) Miller, B. G., Hassell, A. M., Wolfenden, R., Milburn, M. V., and
Short, S. A. (2000) Anatomy of a proficient enzyme: the structure of
orotidine 5′-monophosphate decarboxylase in the presence and
absence of a potential transition state analog. Proc. Natl. Acad. Sci.
U. S. A. 97, 2011−2016.
3) Sievers, A., and Wolfenden, R. (2002) Equilibrium of Formation
of the 6-Carbanion of UMP, a Potential Intermediate in the Action of
OMP Decarboxylase. J. Am. Chem. Soc. 124, 13986−13987.
4) Wong, F. M., Capule, C. C., and Wu, W. (2006) Stability of the
-Carbanion of Uracil Analogues: Mechanistic Implications for Model
Reactions of Orotidine-5′-monophosphate Decarboxylase. Org. Lett. 8,
019−6022.
5) Levine, H. L., Brody, R. S., and Westheimer, F. H. (1980)
whole substrate is the sum of two parts. J. Am. Chem. Soc. 127, 15708−
1
5709.
(
(19) Amyes, T. L., Ming, S. A., Goldman, L. M., Wood, B. M., Desai,
B. J., Gerlt, J. A., and Richard, J. P. (2012) Orotidine 5′-
monophosphate decarboxylase: Transition state stabilization from
remote protein-phosphodianion interactions. Biochemistry 51, 4630−
4
(
(
632.
20) Goryanova, B., Amyes, T. L., Gerlt, J. A., and Richard, J. P.
2011) OMP Decarboxylase: Phosphodianion Binding Energy Is Used
To Stabilize a Vinyl Carbanion Intermediate. J. Am. Chem. Soc. 133,
545−6548.
21) Tsang, W.-Y., Amyes, T. L., and Richard, J. P. (2008) A
(
(
6
6
(
Substrate in Pieces: Allosteric Activation of Glycerol 3-Phosphate
6
(
+
Dehydrogenase (NAD ) by Phosphite Dianion. Biochemistry 47,
4
(
575−4582.
Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-
β-D-ribofuranosyl)barbituric acid, 6-azauridine 5′-phosphate, and
uridine 5′-phosphate. Biochemistry 19, 4993−4999.
22) Amyes, T. L., and Richard, J. P. (2007) Enzymatic catalysis of
proton transfer at carbon: activation of triosephosphate isomerase by
phosphite dianion. Biochemistry 46, 5841−5854.
(
6) Houk, K. N., Lee, J. K., Tantillo, D. J., Bahmanyar, S., and
(23) Amyes, T. L., O’Donoghue, A. C., and Richard, J. P. (2001)
Hietbrink, B. N. (2001) Crystal structures of orotidine mono-
phosphate decarboxylase: does the structure reveal the mechanism
of nature’s most proficient enzyme? ChemBioChem 2, 113−118.
Contribution of phosphate intrinsic binding energy to the enzymatic
rate acceleration for triosephosphate isomerase. J. Am. Chem. Soc. 123,
1
(
1325−11326.
24) Richard, J. P. (2012) A Paradigm for Enzyme-Catalyzed Proton
Transfer at Carbon: Triosephosphate Isomerase. Biochemistry 51,
652−2661.
25) Amyes, T. L., and Richard, J. P. (2013) Specificity in Transition
State Binding: The Pauling Model Revisited. Biochemistry 52, 2021−
035.
26) Miller, B. G., Snider, M. J., Short, S. A., and Wolfenden, R.
2000) Contribution of Enzyme-Phosphoribosyl Contacts to Catalysis
by Orotidine 5′-Phosphate Decarboxylase. Biochemistry 39, 8113−
118.
27) Barnett, S. A., Amyes, T. L., McKay Wood, B., Gerlt, J. A., and
(
7) Lee, T.-S., Chong, L. T., Chodera, J. D., and Kollman, P. A.
(
2001) An alternative explanation for the catalytic proficiency of
orotidine 5′-phosphate decarboxylase. J. Am. Chem. Soc. 123, 12837−
2848.
8) Silverman, R. B., and Groziak, M. P. (1982) Model chemistry for
2
(
1
(
a covalent mechanism of action of orotidine 5′-phosphate decarbox-
2
(
(
ylase. J. Am. Chem. Soc. 104, 6434−6439.
(
1
9) Beak, P., and Siegel, B. (1976) Mechanism of decarboxylation of
,3-dimethylorotic acid. A model for orotidine 5′-phosphate
decarboxylase. J. Am. Chem. Soc. 98, 3601−3606.
10) Shostak, K., and Jones, M. E. (1992) Orotidylate decarboxylase:
8
(
(
insights into the catalytic mechanism from substrate specificity studies.
Richard, J. P. (2010) Activation of R235A Mutant Orotidine 5′-
Monophosphate Decarboxylase by the Guanidinium Cation: Effective
Molarity of the Cationic Side Chain of Arg-235. Biochemistry 49, 824−
826.
(28) Goryanova, B., Spong, K., Amyes, T. L., and Richard, J. P.
(2013) Catalysis by Orotidine 5′-Monophosphate Decarboxylase:
Effect of 5-Fluoro and 4′-Substituents on the Decarboxylation of Two-
Part Substrates. Biochemistry 52, 537−546.
Biochemistry 31, 12155−12161.
(
11) Appleby, T. C., Kinsland, C., Begley, T. P., and Ealick, S. E.
(
2000) The crystal structure and mechanism of orotidine 5′-
monophosphate decarboxylase. Proc. Natl. Acad. Sci. U. S. A. 97,
005−2010.
12) Lee, J. K., and Houk, K. N. (1997) A proficient enzyme
2
(
revisited: the predicted mechanism for orotidine monophosphate
decarboxylase. Science 276, 942−945.
K
dx.doi.org/10.1021/bi401117y | Biochemistry XXXX, XXX, XXX−XXX