Please do not adjust margins
Page 5 of 5
ChemComm
COMMUNICATION
Journal Name
Liu, L, Shangguan, H. Wang, D. Xia andDBO.IS: h10i,.1P0o39ly/mC8.CCCh0e0m77.0E
micro-stripes are therefore visible in the FITC channel after
treating with the α-CD-FITC/γ-CD-RhB mixture (Figure 2, S13).
Green light irradiation switched the Glass-ipAzo/Azo to the
“On” state, both α-CD-FITC and γ-CD-RhB are thus immobilized
on the substrate surface, and a crossed FITC/RhB micro-stripe
structure is observed. Upon UV light irradiation, the Glass-
ipAzo/Azo is transformed to the “Off” state, neither α-CD-FITC
nor γ-CD-RhB are immobilized on the substrate surface.
Therefore, no fluorescent micro-stripes are visible on the
surface (Figure S13). Each of these states is easily obtained from
any of the others by the application of blue light (“Azo” State,
FITC micro-stripes), green light (“On” State, crossed FITC/RhB
micro-stripes), or UV light (“Off” State, no micro-stripes)
2017,
8
, 3783-3787; (e) X. Wu, Y. Yu, L. Gao, X. Hu and L.
, 966-970; (f) F. Rachdi, L.
Wang, Org. Chem. Front. 2016,
3
Hajji, C. Goze, D. J. Jones, P. Maireles-Torres and J. Rozière,
Solid. State. Commun. 1996, 100, 237-240.
2
3
(a) W. Xu, P. A. Ledin, Z. Iatridi, C. Tsitsilianis and V. V.
Tsukruk, Angew. Chem. Int. Ed. 2016, 55, 4908-4913; (b) C. Y.
Ang, S. Y. Tan, S. Wu, Q. Qu, M. F. E. Wong, Z. Luo, P. Li, S. T.
Selvan and Y. Zhao, J. Mater. Chem. C 2016, 4, 2761-2774.
(a) H. M. D. Bandara and S. C. Burdette, Chem. Soc. Rev.
2012, 41, 1809-1825; (b) M. M. Russew and S. Hecht, Adv.
Mater. 2010, 22, 3348-3360; (c) K. Ichimura, S. K. Oh and M.
Nakagawa, Science 2000, 288, 1624-1626; (d) W. A. Velema,
W. Szymanski and B. L. Feringa, J. Am. Chem. Soc. 2014, 136
2178-2191; (e) F. Ercole, T. P. Davis and R. A. Evans, Polym.
,
(Scheme 1, Figure 2), which are as expected by our UV/vis and
Chem. 2010, 1, 37-54; (f) J. Lv, Y. Liu, J. Wei, E. Chen, L. Qin
NMR results. The fourth state (“ipAzo” State) is only obtained
by irradiating the Glass-ipAzo/Azo substrate with UV light and
red light in sequence; then the γ-CD-RhB is immobilized on the
surface and fluorescent micro-stripes are only visible in the RhB
channel (Figure 2, S13). UV light irradiation induces the back
switching from the “ipAzo” state to the “Off” state. This
demonstrates that the supramolecular micropatterned system,
formed by the Azo/α-CD and ipAzo/γ-CD, can be photo-
controlled orthogonally by UV light, blue light, green light and
red light irradiation, and switched between 4 different states
and Y. Yu, Nature 2016, 537, 179-184; (g) S. Sun, D.
Thompson, U. Schmidt, D. Graham and G. J. Leggett, Chem.
Commun. 2010, 46, 5292-5294; (h) C. Wu, Q. Cheng, S. Sun
and B. Han, Carbon 2012, 50, 1083-1089.
(a) D. P. Ferris, Y. L. Zhao, N. M. Khashab, H. A. Khatib, J. F.
Stoddart and J. I. Zink, J. Am. Chem. Soc. 2009, 131, 1686-
1688; (b) N. Fomina, J. Sankaranarayanan and A. Almutairi,
Adv. Drug. Delivery. Rev. 2012, 64, 1005-1020; (c) I. Tomatsu,
K. Peng and A. Kros, Adv. Drug. Delivery. Rev. 2011, 63, 1257-
1266; (d) J. Deng, X. Liu, W. Shi, C. Cheng, C. He and C. Zhao,
4
ACS Macro. Lett. 2014,
3
, 1130-1133; (e) M. Chen and F.
, 1549-1555.
Besenbacher, ACS Nano. 2011,
5
(Scheme 1, Figure 2).
5
6
(a) M. Natali and S. Giordani, Chem. Soc. Rev. 2012, 41, 4010-
4029; (b) A. S. Lubbe, W. Szymanski and B. L. Feringa, Chem.
Sov. Rev. 2017, 46, 1052-1079.
In summary, we demonstrated orthogonal switching of an
Azo/ipAzo system under pure photo-control by UV (365 nm),
blue (470 nm), green (530 nm) and red light (625 nm)
irradiation. 4 independent photostationary states of Azo/ipAzo
combinations are realized and switched between each other by
(a) A. Harada, Y. Takashima and M. Nakahata, Acc. Chem.
Res. 2014, 47, 2128-2140; (b) L. Yang, X. Tan, Z. Wang and X.
Zhang, Chem. Rev. 2015, 115, 7196-7239; (c) S. Yagai and A.
Kitamura, Chem. Soc. Rev. 2008, 37, 1520-1529. (d) G. Yu, K.
Jie and F. Huang, Chem. Rev. 2015, 115, 7240-7303; (e) D.
light.
A
photoresponsive orthogonal supramolecular
Wang, D. Xie, W. Shi, S. Sun and C. Zhao, Langmuir 2013, 29
,
micropatterned surface was fabricated by combining the Azo/α-
CD host-guest complex with ipAzo/γ-CD. The successful design
of photoresponsive orthogonal supramolecular systems offers
more applications of light-controlled materials in complex
irradiation environments. Although the reported structures are
in the microscopic scale, we envision that photoresponsive
orthogonal supramolecular systems should also be applicable to
macroscopic systems. For example, Shi et al. proposed a novel
methodology of macroscopic supramolecular assembly to
fabricate 3D ordered structures [12]. This method can mildly
load necessary bioactive species to designated locations within
the structure during fabrication, which is significant for the
increasing demand in constructing chemically or biologically
specific tissue scaffolds. Our design may lead to more intelligent
photoresponsive microscopic and macroscopic systems in the
future.
8311-8319; (f) Y. Zhou, D. Wang, S. Huang, G. Auernhammer,
Y. He, H.-J. Butt and S. Wu, Chem. Commun. 2015, 51, 2725-
2727.
7
8
D. Wang, M. Wagner, A. K. Saydjari, J. Mueller, S. Winzen, H.-
J. Butt and S. Wu, Chem. Eur. J. 2017, 23, 2628-2634.
(a) D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A.
Mihi, A. J. Baca, G. R. Bogart, P. Braun and J. A. Rogers, Nat.
Nanotechnol. 2011, 6, 402-407; (b) S. Park, D. H. Lee and T. P.
Russell, Adv. Mater. 2010, 22, 1882-1884; (c) J. Rodríguez-
Hernández, Prog. Polym. Sci. 2015, 42, 1-41; (d) M. Jaschke
and H.-J. Butt, Langmuir, 1995, 11, 1061-1064.
9
(a) W. Jiang, G. Wang, Y. He, X. Wang, Y. An, Y. Song and L.
Jiang, Chem. Commun. 2005, 3550-3552; (b) H. Zhou, C. Xue,
P. Weis, Y. Suzuki, S. Huang, K. Koynov, G. K. Auernhammer,
R. Berger, H.-J. Butt and S. Wu, Nat. Chem. 2017, 9, 145-151;
(c) A. A. Brown, O. Azzaroni and W. T. S. Huck, Langmuir
2009, 25, 1744-1749.
10 (a) Y. Wang and Q. Li, Adv. Mater. 2012, 24, 1926-1945; (b) Y.
Gong, J. Yang, F. Cao, J. Zhang, H. Cheng, R. Zhuo and X.
D.W. was supported by the CSC program. This work was
supported by the Deutsche Forschungsgemeinschaft (DFG, WU
787/2-1).
Zhang, J. Mater. Chem. B 2013, 1, 2013-2017; (c) Z. Ming, X.
Ruan, C. Bao, Q. Lin, Y. Yang and L. Zhu, Adv. Funct. Mater.
2017, 27, 1606258.
11 (a) D. Wang and S. Wu, Langmuir 2016, 32, 632-636; (b) D.
Wang, M. Wagner, H.-J. Butt and S. Wu, Soft. Matter. 2015,
11, 7656-7662.
12 M. Cheng, Y. Wang, L. Yu, H. Su, W. Han, Z. Lin, J. Li, H. Hao,
C. Tong, X. Li and F. Shi, Adv. Funct. Mat. 2015, 25, 6851-
6857.
Notes and references
1
(a) M. M. Lerch, M. J. Hansen, W. A. Velema, W. Szymanski
and B. L. Feringa, Nat. Commun. 2016, 7, 12054; (b) S.
Schoder and C. A. Schalley, Chem. Commun. 2017, 53, 9546-
9549; (c) J. Steinkoenig, M. M. Zieger, H. Mutlu and C.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins