5210
J. Am. Chem. Soc. 2000, 122, 5210-5211
Communications to the Editor
A Phenyliodonium Ylide as a Precursor for
Dicarboethoxycarbene: Demonstration of a Strategy
for Carbene Generation
Margaret B. Camacho, Aurora E. Clark,
Tabitha A. Liebrecht, and JoAnn P. DeLuca*
Department of Chemistry
Central Washington UniVersity
Ellensburg, Washington 98926-7539
ReceiVed January 31, 2000
ReVised Manuscript ReceiVed April 4, 2000
Thermal or photochemical decomposition of carbene precur-
sors, especially diazocompounds and diazirenes, leads in many
cases to both a free carbene intermediate and products formed
directly from the precursor.1 This ability of precursors to mimic
carbenes often complicates mechanistic studies. For example,
,2
direct photolysis of dimethyl diazomalonate (1a) leads to products
1
stemming from reactions of substrate with :C(CO
2
Me)
2 2
, :C(CO -
3
1
3
2
Me) , and photoexcited 1a ( 1a*) as outlined in Scheme 1. In
situations such as this, alternative modes of carbene generation
have proved valuable in characterizing the reactive species. Here
4
Figure 1. B3LYP/LANL2DZ optimized structures.
we describe a strategy for identifying new carbene precursors and
Scheme 1
1
report the facile generation of :C(CO
2
Et)
2
by thermal decom-
position of iodonium ylide 1b, as well as a supporting compu-
tational study.
Reaction with compounds containing atoms with unshared
electron pairs to produce ylides is one of the typical reactions of
singlet carbenes (eq 1). If reversible, this reaction might be useful
6
with carbene, or at least carbenoid, intermediates, yet they have
not previously been exploited as sources of true carbenes.
Although they are known to be less stable than the analogous
diazonium ylides, no information is available concerning the
strength of the carbene-nucleophile bond in iodonium ylides.
Paying particular attention to these ylides vs diazo compounds
as sources of free carbenes, we have started to carefully
characterize the photochemical and thermal decompositions of
selected iodonium ylides through both computational and labora-
tory studies.
5
as a source of carbenes. Inspection of eq 1 leads to the prediction
that the weaker the carbene-nucleophile bond, the more likely
that thermal, and possibly photochemical, decomposition of the
ylide will lead to free carbenes without intervention of masquer-
ading precursors.
As the first step in the computational study, structures were
calculated for N -CH , HI-CH (2) and PhI-CH (3), using
the B3LYP density functional method and LANL2DZ basis set,
and the Gaussian 94 software package. Two stable conformations
were found for both HI-CH and PhI-CH and were confirmed
Iodonium ylides have been shown to decompose under thermal,
photochemical, and catalytic conditions to give products consistent
2
2
2
2
7
8
9
(1) (a) Frey, H. M.; Stevens, I. D. R. J. Chem. Soc. 1965, 3101. (b) Mansoor,
A. M.; Stevens, I. D. R. Tetrahedron Lett. 1966, 1733. (c) Chang, K.-T.;
Shechter, H. J. Am. Chem. Soc. 1979, 101, 5082. (d) Chambers, G. R.; Jones,
M., Jr. J. Am. Chem. Soc. 1980, 102, 4516. (e) Modarelli, D. A.; Morgan, S.;
Platz, M. S. J. Am. Chem. Soc. 1992, 114, 7034.
2
2
as minima through calculation of vibrational frequencies. The
calculated structures and selected bond distances are shown in
Figure 1. The C-I bond distance in the more stable conformation
(
2) Kirmse, W. Carbene Chemistry, 2nd ed.; Academic Press: New York,
971.
3) (a) Jones, M., Jr.; Ando, W.; Hendrick; M. E.; Kulczycki, A.; Howley,
P. M.; Hummel, K. F.; Malament, D. S. J. Am. Chem. Soc. 1972, 94, 7469.
b) Wulfman, D. S.; Poling, B.; McDaniel, R. S., Jr. Tetrahedron Lett. 1975,
519. (c) Wang, J.-L.; Toscano, J. P.; Platz, M. S.; Nicolaev, V.; Popik, V. J.
Am. Chem. Soc. 1995, 117, 5477.
4) See, for example: (a) Chen, N.; Jones, M., Jr.; White, W. R.; Platz, M.
1
of HI-CH is shorter than the C-I bond distance calculated for
2
(
(6) Stang, P. J.; Zhdankin, V. V. Chem. ReV. 1996, 96, 1123.
(7) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(8) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
(
4
(9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson,
B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.;
Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.;
Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara,
A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.;
Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley,
J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez,
C.; Pople, J. A. Gaussian 94 (Revision E.2); Gaussian, Inc.: Pittsburgh, PA,
1995.
(
S. J. Am. Chem. Soc. 1991, 113, 4981. (b) Fox, M. J.; Scacheri, J. E. G.;
Jones, K. G.; Jones, M., Jr.; Shevlin, P. B.; Armstrong, B.; Sztyrbicka, R.
Tetrahedron Lett. 1992, 33, 5021. (c) Armstrong, B. M.; McKee, M. L.;
Shevlin, P. B. J. Am. Chem. Soc. 1995, 117, 3685. (d) Nigam, M.; Platz, M.
S.; Showalter, B. M.; Toscano, J. P.; Johnson, R.; Abbot, S. C.; Kirchhoff,
M. M. J. Am. Chem. Soc. 1998, 120, 8055.
(5) Padwa, A.; Hornbuckle, S. F. Chem. ReV. 1991, 91, 263.
1
0.1021/ja000334o CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/10/2000