BULLETIN OF THE
+
+/2+
Article
Solvent-controlled Novel Cu and Cu
Fluorescent
KOREAN CHEMICAL SOCIETY
+
due to the softness of Cu , which induces better affinity to
References
2+
biothiols than Cu . However, here, we cannot rule out ligand
oxidation as a possible route upon Cu binding.
2
+
1. E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Chem.
Rev. 2006, 106, 1995.
2
3
. C. J. Fahrni, Curr. Opin. Chem. Biol. 2013, 17, 656.
. H. Kozlowski, A. Janicka-Klos, J. Brasun, E.
Gaggelli, D. Valensin, G. Valensin, Coord. Chem. Rev. 2009,
Conclusion
2
+
Owing to the paramagnetic effect of Cu and the dispropor-
2
53, 2665.
+
+
tionation capacity of Cu , probe design for discerning Cu and
4. E. I. Solomon, P. Chen, M. Metz, S. K. Lee, A. E. Palmer, Angew.
Chem. Int. Ed. 2001, 40, 4570.
2
+
Cu is challenging. From previously reported studies, there
are very few examples of fluorescence “turn-on” and differen-
5. L. Guilloreau, S. Combalbert, A. Sournia-Saquet, H. Mazarguil,
P. Faller, ChemBioChem 2007, 8, 1317.
+
2+
tiation probes for Cu and Cu involving the same chemical
system. Here, we synthesized a simple yet interesting ben-
zothiazole Schiff base compound from a chemosensing stand-
point. Solutions of 16 different metal ions were screened;
6
. D. L. Jiang, L. J. Men, J. X. Wang, Y. Zhang,
S. Chickenyen, Y. S. Wang, F. M. Zhou, Biochemistry 2007,
4
6, 9270.
7
. M. F. Jobling, X. D. Huang, L. R. Stewart, K. J. Barnham,
C. Curtain, I. Volitakis, M. Perugini, A. R. White,
R. A. Cherny, C. L. Masters, C. J. Barrow, S. J. Collins,
A. I. Bush, R. Cappai, Biochemistry 2001, 40, 8073.
. K. P. Kepp, Chem. Rev. 2012, 112, 5193.
+
exhibition of strong fluorescence sensitivity for Cu (51-fold)
at 436 nm in 100% acetonitrile was detected. In 50% (v/v) ace-
+
2+
tonitrile in H O, both fluorescence for [Cu ] and [Cu ] were
2
shown at 446 nm. In 100%, a very weak nonselective fluores-
8
cence was observed. When the volume ratio of acetonitrile/
9. Y. Ha, O. G. Tsay, D. G. Churchill, Monatsh. Chem. 2011,
142, 385.
10. M. T. Morgan, P. Bagchi, C. J. Fahrni, J. Am. Chem. Soc. 2011,
H O was increased from 0.0 to 1.0, a 30 nm solvatochromic
2
2
+
blue shift was seen. In addition, whereas Cu showed linear-
ity, Cu exhibited a discontinuous emission trend assigned to
+
1
33, 15906.
1. X. W. Cao, W. Y. Lin, W. Wan, Chem. Commun. (Camb.) 2012,
8, 6247.
1
metal solvent coordination. Time-dependent emission mea-
4
surements showed an exponential decay curve (τ = 2.99 ×
1
3
+
2
12. A. F. Chaudhry, S. Mandal, K. I. Hardcastle, C. J. Fahrni, Chem.
Sci. 2011, 2, 1016.
1
0 s, 10 equiv of Cu , R = 0.999) and a linear, stable decay
line (slope = –0.0216, 5 equiv Cu , R = 0.996). Interference
+
2
1
3. A. F. Chaudhry, M. Verma, M. T. Morgan, M. M. Henary,
N. Siegel, J. M. Hales, J. W. Perry, C. J. Fahrni, J. Am. Chem.
Soc. 2010, 132, 737.
experiments in 50% (v/v) acetonitrile in H O showed that the
2
+
2+
emissions by Cu and Cu were not disturbed by other metal
ions, acidity, or basicity, which means that the total amount of
Cu and Cu can be measured by this probing system. While
1
4. X. Yan, X. Li, S.-S. Lv, D.-C. He, Dalton Trans. 2012, 41, 727.
+
2+
15. H. C. Lan, B. Liu, G. L. Lv, Z. H. Li, X. D. Yu, K. Y. Liu,
X. H. Cao, H. Yang, S. P. Yang, T. Yi, Sens. Actuat. B 2013,
173, 811.
+
ROS generally did not interfere with the emission by Cu in
acetonitrile solvent, peroxynitrite did decrease the emission
+
2+
1
1
1
6. J. R. Lakowicz, Principles of Fluorescence Spectroscopy,
Kluwer Academic Plenum Publishers, New York, 1999.
7. B. Valeur, Molecular Fluorescence: Principles and Applica-
tions, Wiley-VCH, Weinheim, 2001.
8. F. M. Zehentbauer, C. Moretto, R. Stephen, T. Thevar,
J. R. Gilchrist, D. Pokrajac, K. L. Richard, J. Kiefer, Spectro-
chim. Acta A 2014, 121, 147.
arising from [Cu ] (78%); thus, an increase in Cu -based
fluorescence (28-fold) forms a toggle. Titration and job anal-
ysis suggest that multi-site binding modes may exist between
+
the probe and Cu arising from the probe structure containing
many nitrogen and oxygen atoms (Supporting Information).
Biothiols, when added, showed almost complete reversibility
+
of the Cu -induced emission in acetonitrile:H O (50%:50%,
2
19. U. S. Raikar, C. G. Renuka, Y. F. Nadaf, B. G. Mulimani,
A. M. Karguppikar, M. K. Soudagar, Spectrochim. Acta A
2006, 65, 673.
20. S. Asim, A. Mansha, G. Grampp, S. Landgraf, M. Zahid,
I. A. Bhatti, J. Lumin. 2014, 153, 12.
2
+
v/v), relative to the partial reversibility of Cu -generated
emission. Thus, by regulating the ratio between acetonitrile
+
and H O, Cu could be probed selectively. Both oxidation
2
states of copper could be measured with one small synthetic
system.
2
1. A. Jirgensons, G. Leitis, I. Kalvinsh, D. Robinson, P. Finn,
N. Khan, PCT Int. Appl. WO 2008142376 A1 20081127,
2
008, 203.
Acknowledgment. We wish to thank Mr. Hack Soo
Shin for acquisition of two-dimensional NMR spectra.
D.G.C. acknowledges support from the Mid-Career
Researcher Program through the NRF (National Research
Foundation) of Korea (NRF-2014R1A2A1A11052980)
funded byMEST and theso-called End-Run Project ofKAIST
2
2
2. T. Guo, L. Cui, J. Shen, R. Wang, W. Zhu, Y. Xu, X. Qian, Chem.
Commun. 2013, 49, 1862.
3. Q. Zhang, P. Wilson, Z. Li, R. McHale, J. Godfrey,
A. Anastasaki, C. Waldron, D. M. Haddleton, J. Am. Chem.
Soc. 2013, 135, 7355.
2
4. B. M. Rosen, X. Jiang, C. J. Wilson, N. H. Nguyen,
M. J. Monteiro, V. Percec, J. Polym. Sci. A: Polym. Chem.
(N01140684). D.G.C. and S.T.M. acknowledge support
from the Institute for Basic Science (IBS).
2
009, 47, 5606.
2
5. L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am.
Chem. Soc. 2006, 128, 10.
SupportingInformation. Additionalsupportinginformation
is available in the online version of this article.
Bull. Korean Chem. Soc. 2016, Vol. 37, 69–76
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.bkcs.wiley-vch.de
75