Angewandte Chemie International Edition
10.1002/anie.201706237
COMMUNICATION
The involvement of •CF
from the Ni -species 3 is thus demonstrated, which had not
been unambiguously illustrated in the past. It is to be noted that
Lancaster and co-worker proposed very recently that the Ni CF
3
radicals in the Ar–CF
3
coupling
[6]
Sanford and co-workers reported the intramolecular C–H bond
IV
IV
activation of aromatic rings to yield cyclometalated ArNi complexes
under oxidative conditions. E. Chong, J. W. Kampf, A. Ariafard, A. J.
Canty, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 6058–6061.
a) G. E. Martinez, C. Ocampo, Y. J. Park, A. R. Fout, J. Am. Chem. Soc.
IV
3
[7]
complexes of type III reported by Sanford may be a new case
2016, 138, 4290–4293; b) J. W. Schultz, K. Fuchigami, B. Zheng, N. P.
[
17]
study of “inverted” ligand field, and that III would be prone to
Rath, L. M. Mirica, J. Am. Chem. Soc. 2016, 138, 12928–12934; c) M.
B. Watson, N. P. Rath, L. M. Mirica, J. Am. Chem. Soc. 2017, 139, 35–
38.
[
18]
eliminate •CF
3
radicals.
In conclusion, we have devised a facile route of access to
IV
IV
a unique Ni complex 3, namely [(Py)
2
Ni F
2
(CF
3
)
2
]. Remarkably,
[8]
For reviews about aromatic trifluoromethylation and perfluoroalkylation,
see: a) O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111,
4475–4521; T. Liang, C. N. Neumann, T. Ritter, Angew. Chem., Int. Ed.
3
is stable in solid form for months despite the absence of highly
IV
donor, polydentate ancillary ligands. The Ni complex allows
direct Ar–CF bond formation in nearly quantitative yields from
inert Ar–H derivatives.
to experimental isolation of reaction intermediates proved for the
first time that the C–H bond breaking/C–CF bond forming
2013, 52, 8214–8264; c) C. Alonso, E. Martinez de Marigorta, G.
3
Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847–1935.
[
19]
The preliminary kinetic study coupled
[9]
a) G. G. Dubinina, W. W. Brennessel, J. L. Miller, D. A. Vicic,
Organometallics 2008, 27, 3933–3938; b) J. Jover, F. M. Miloserdov, J.
Benet-Buchholz, V. V. Grushin, F. Maseras, Organometallics 2014, 33,
3
IV
III
sequence can occur from well-defined Ni and Ni centers albeit
with distinct reaction rates, the former being much faster than
the latter. We believe that the accessibility of complex 3 will
open new avenues for research in Ni -chemistry directed toward
aromatic trifluoromethylation and C–H bond functionalizations.
6531–6543.
IV
[10] For related examples of well-defined, coupling-competent Pd CF
3
organometallics, see: a) Y. Ye, N. D. Ball, J. W. Kampf, M. S. Sanford,
J. Am. Chem. Soc. 2010, 132, 14682–14687; b) D. C. Powers, E. Lee,
A. Ariafard, M. S. Sanford, B. F. Yates, A. J. Canty, T. Ritter, J. Am.
Chem. Soc. 2012, 134, 12002–12009; c) N. D. Ball, J. W. Kampf, M. S.
Sanford, J. Am. Chem. Soc. 2010, 132, 2878–2879; d) N. D. Ball, B.
Gary, Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 7577–7584.
[11] a) P. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, Chem. Rev. 2010, 110,
IV
Acknowledgements
824–889; b) A. J. Hickman, M. S. Sanford, Nature 2012, 484, 177–185;
c) A. Casitas, X. Ribas, Chem. Sci. 2013, 4, 2301–2318.
The authors are indebted with ANR program (ANR-12-BS07-
[
12] a) C.-P. Zhang, H. Wang, A. Klein, C. Biewer, K. Stirnat, Y. Yamaguchi,
0016-01), CNRS and Université de Toulouse for financial
L. Xu, V. Gomez-Benitez, D. A. Vicic, J. Am. Chem. Soc. 2013, 135,
support. We are grateful to CalMip (CNRS, Toulouse, France)
for access to calculation facilities. L. Rechignat is acknowledged
for EPR spectroscopy analyses and simulation of 2 and 2 Py.
8
141–8144; b) F. Tang, N. P. Rath, L. M. Mirica, Chem. Commun. 2015,
51, 3113–3116; c) J. R. Bour, N. M. Camasso, E. A. Meucci, J. W.
Kampf, A. J. Canty, M. S. Sanford, J. Am. Chem. Soc. 2016, 138,
.
16105–16111.
III/IV
[13] a) N. M. Camasso, M. S. Sanford, Science 2015, 347, 1218–1220; b) J.
R. Bour, N. M. Camasso, M. S. Sanford, J. Am. Chem. Soc. 2015, 137,
Keywords: High-valent species • Ni
organometallics •
Fluorine • Aromatic trifluoromethylation • Mechanism elucidation
8034–8037; c) E. A. Meucci, N. M. Camasso, M. S. Sanford,
Organometallics 2017, 36, 247–250.
[
1]
a) J. J. Topczewski, M. S. Sanford. Chem. Sci. 2015, 6, 70–76; b) T.
Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc.
Rev. 2016, 45, 2900–2936.
[14] a) H. Xu, J. B. Diccianni, J. Katigbak, C. Hu, Y. Zhang, T. Diao, J. Am.
Chem. Soc. 2016, 138, 4779–4786; b) J. B. Diccianni, C. Hu, T. Diao,
Angew. Chem., Int. Ed. 2017, 56, 3635–3539; Angew. Chem. 2017,
129, 3689–3693.
[
2]
3]
J. Yamaguchi, K. Muto, K. Itami, Top. Curr. Chem. (Z) 2016, 374, 55,
doi: 10.1007/s41061-016-0053-z.
.
[15] The absence of superhyperfine coupling with the fluorine atom in 2 Py
[
a) X. Hu, Chem. Sci. 2011, 2, 1867–1886; b) S. Z. Tasker, E. A.
Standley, T. F. Jamison, Nature 2014, 509, 299–309; c) V. P. Ananikov,
ACS Catal. 2015, 5, 1964–1971.
may be due to fluorine dissociation in presence of coordinating ligands
III
(Py or PrCN). For similar behavior in Ni F complexes, see: a) W. Zhou,
S. Zheng, J. W. Schultz, N. P. Rath, L. M. Mirica, J. Am. Chem. Soc.
2016, 138, 5777–5780; b) W. Zhou, M. B. Watson, S. Zheng, N. P.
Rath, L. M. Mirica, Dalton Trans 2016, 45, 15886–15893; c) H. Lee, J.
Börgel, T. Ritter, Angew. Chem.; Int. Ed. 2017, 56, 6966–6969; Angew.
Chem. 2017, 129, 7070–7073.
[
4]
5]
a) Y. Aihara, N. Chatani, J. Am. Chem. Soc. 2014, 136, 898–901; b) Z.
Ruan, S. Lackner, L. Ackermann, Angew. Chem., Int. Ed. 2016, 55,
3153–3157; Angew. Chem. 2016, 128, 3205–3209; c) T. Uemura, M.
Yamaguchi, N. Chatani, Angew. Chem., Int. Ed. 2016, 55, 3162–3165;
Angew. Chem. 2016, 128, 3214–3222.
[16] As further proof of the mechanism, when complexes 1 and 3 were
.
[
a) U. Kölle, F. Khouzami, H. Lueken, Chem. Ber. 1982, 115, 1178–
mixed, the mixture 2/2 Py was seen by EPR.
1
196; b) J. L. Robbins, N. Edelstein, B. Spencer, J. C. Smart, J. Am.
[17] a) R. C. Walroth, J. T. Lukens, S. N. MacMillan, K. D. Finkelstein, K. M.
Lancaster, J. Am. Chem. Soc. 2016, 138, 1922–1931; b) R. Hoffmann,
S. Alvarez, C. Mealli, A. S. Falceto, T. J. Cahill III, T. Zeng, G. Manca,
Chem. Rev. 2016, 116, 8173–8192.
Chem. Soc. 1982, 104, 1882–1893; c) H.-F. Klein, A. Bickelhaupt, T.
Jung, G. Cordier, Organometallics 1994, 13, 2557–2559; d) H.-F. Klein,
A. Bickelhaupt, M. Lemke, H. Sun, A. Brand, T. Jung, C. Röhr, U.
Flörke, H.-J. Haupt, Organometallics 1997, 16, 668–676; e) S. Shimada,
M. L. N. Rao, M. Tanaka, Organometallics 1999, 18, 291–293; f) V.
Dimitrov, A. Linden, Angew. Chem., Int. Ed. 2003, 42, 2631–2633;
Angew. Chem. 2003, 115, 2735–2737; g) M. Carnes, D. Buccella, J. Y.-
C. Chen, A. P. Ramirez, N. J. Turro, C. Nuckolls, M. Steigerwald,
Angew. Chem., Int. Ed. 2009, 48, 290–294; Angew. Chem. 2009, 121,
[18] S. N. MacMillan, K. M. Lancaster, ACS Catal. 2017, 7, 1776–1791.
IV
[19] As preliminary extension of this work, the Ni CF
3
complex 3 was found
to be highly efficient for the innate trifluoromethylation of pyridine to
yield Py–CF in 91% after 2 days at room temperature (ratio of o,m,p-
3
regioisomers equal to 5.9:3.7:1; Figure S10). The scope of the aromatic
trifluoromethylation is currently under investigation in our laboratories.
2
96–300; h) H.-F. Klein, P. Kraikivskii, Angew. Chem., Int. Ed. 2009, 48,
60–261; Angew. Chem. 2009, 121, 266–267; i) R. Mitra, K.-R
2
Pörschke, Angew. Chem., Int. Ed. 2015, 54, 7488–7490; Angew. Chem.
015, 127, 7596–7598.
2
This article is protected by copyright. All rights reserved.