ChemComm
Communication
The mechanism of the reaction is proposed according to
2
4
Wang and coworkers. Thus, benzonitriles first react with one
molecule of H O in the presence of Fe(ClO ) ÁxH O to form a
2
4 3
2
hydroxylimine–Fe(III) complex. The complex then undergoes a
stepwise addition towards graphene at N and O atoms involving the
release of Fe(II) and combination of the intermediate radicals,
resulting in the formation of an oxazole bridge between graphene
and the incoming phenyl ring bearing the functional groups.
In conclusion, we have, for the first time, functionalised
4 3 2
graphene using Fe(ClO ) ÁxH O-catalysed cycloaddition between
benzonitrile and unsaturation in graphene. The products were
analyzed using Raman, XPS, TGA and AFM. The analytical
results proved the successful covalent attachment of the organic
molecules to graphene. By changing the R groups in benzonitrile
derivatives, we obtained functionalised graphene with methoxy,
chloromethyl, dodecyl and oligo(ethylene oxide) functionalities,
respectively. Therefore, the present reaction can be used as a
novel tool for the organic functionalisation of graphene under
mild conditions.
Fig. 3 TGA of pristine graphene and functionalised graphenes.
toluene or ODCB, whereas FG-4 forms stable dispersion in
water. This macroscopic evidence demonstrates that graphene
was indeed functionalised.
Benzonitriles with electron-withdrawing groups such as
4
-nitro-benzonitrile did not react with graphene. XPS showed no
signal of nitrogen on the collected graphene species by filtration
after washing thoroughly with organic solvents) (Fig. S2, ESI†).
We thank the financial support from the National Basic
Research Program of China (grant no. 2011CB605701).
(
This also indicates that the product purification process used in
this work is efficient to remove any physically adsorbed organic
molecule.
Notes and references
1
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 306,
666–669.
2
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,
A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and
R. S. Ruoff, Science, 2009, 324, 1312–1314.
P. W. Sutter, J.-I. Flege and E. A. Sutter, Nat. Mater., 2008, 7, 406–411.
C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li,
J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de
Heer, Science, 2006, 312, 1191–1196.
3
4
5
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda,
A. Dimiev, B. K. Price and J. M. Tour, Nature, 2009, 458, 872–876.
L. Zhi and K. M u¨ llen, J. Mater. Chem., 2008, 18, 1472–1484.
(a) P. Kumar, RSC Adv., 2013, 3, 11987–12002; (b) P. Kumar, B. Das,
B. Chitara, K. S. Subrahmanyam, K. Gopalakrishnan, S. B. Krupanidhi
and C. N. R. Rao, Macromol. Chem. Phys., 2012, 213, 1146–1163;
6
7
(
2
c) P. Kumar, K. S. Subrahmanyam and C. N. R. Rao, Int. J. Nanosci.,
011, 10, 559–566; (d) P. Kumar, K. S. Subrahmanyam and
C. N. R. Rao, Mater. Express, 2011, 1, 252–256.
(a) B. Wang, X. Wang, W. Lou and J. Hao, New J. Chem., 2012, 36,
8
9
1684–1690; (b) T. Lin, Z. Liu, M. Zhou, H. Bi, K. Zhang, F. Huang,
D. Wan and Y. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 3088–3092.
V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and
J. N. Coleman, Science, 2013, 340, 1226419.
1
0 (a) W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958,
8
0, 1339; (b) D. Li, M. B. M u¨ ller, S. Gilje, R. B. Kaner and
G. G. Wallace, Nat. Nanotechnol., 2008, 3, 101–105.
1 H. Liu, S. Ryu, Z. Chen, M. L. Steigerwald, C. Nuckolls and L. E. Brus,
J. Am. Chem. Soc., 2009, 131, 17099–17101.
2 E. Bekyarova, M. E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W. A. de
Heer and R. C. Haddon, J. Am. Chem. Soc., 2009, 131, 1336–1337.
3 C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour and A. R. Barron,
Nano Lett., 2009, 9, 3460–3462.
1
1
1
1
1
1
4 S. Sarkar, E. Bekyarova and R. C. Haddon, Angew. Chem., 2012, 124,
4
985–4988.
5 B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou and Z. Liu, ACS Nano,
011, 5, 5957–5961.
2
6 W. H. Lee, J. W. Suk, H. Chou, J. Lee, Y. Hao, Y. Wu, R. Piner,
D. Akinwande, K. S. Kim and R. S. Rouff, Nano Lett., 2012, 12,
2
374–2378.
Fig. 4 AFM images of (a) pristine graphene, (b) FG-3 and (c) FG-4, and
photographs of (d) FG-3 and (e) FG-4 in the mixed solvents. (I: top layer is
water; bottom layer is ODCB; II: top layer is toluene; bottom layer is water).
1
7 K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park,
R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson and
E. Rotenberg, ACS Nano, 2011, 5, 1042–1046.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.