Journal of the American Chemical Society
Communication
derivatives. Of particular interest is the evolving understanding
of substrate substituent effects on site selective migratory
insertion. The subtle influence of the remote carbonyl has been
studied through correlative tools providing further evidence
that polarization of the substrate during migratory insertion is
essential for effective site control. This important finding
should allow us to design more versatile catalysts and systems
to achieve greater site selection at even more remote sites.
Exploring this goal in the context of further expansion of the
enantioselective relay Heck reaction is underway.
(7) (a) Werner, E. W.; Mei, T.-S.; Burckle, A. J.; Sigman, M. S. Science
2
012, 338, 1455. (b) Mei, T.-S.; Werner, E. W.; Burckle, A. J.; Sigman,
M. S. J. Am. Chem. Soc. 2013, 135, 6830. (c) Mei, T.-S.; Patel, H. H.;
Sigman, M. S. Nature 2014, 508, 340.
(8) (a) Xu, L.; Hilton, M. J.; Zhang, X.; Norrby, P.-O.; Wu, Y.-D.;
Sigman, M. S.; Wiest, O. J. Am. Chem. Soc. 2014, 136, 1960. (b) Dang,
Y.; Qu, S.; Wang, Z.-X.; Wang, X. J. Am. Chem. Soc. 2014, 136, 986.
c) Hilton, M. J.; Xu, L.-P.; Norrby, P.-O.; Wu, Y.-D.; Wiest, O.;
Sigman, M. S. J. Org. Chem. 2014, 79, 11841. (d) Milo, A.; Bess, E. N.;
Sigman, M. S. Nature 2014, 507, 210.
(
(9) Patel, H. H.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 3462.
(10) For examples demonstrating the relationship between selectivity
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, analytical data for products, NMR
and solvent, see: (a) Reichardt, C. Angew. Chem., Int. Ed. Engl. 1979,
■
1
1
8, 98. (b) MacManus, D. A.; Vulfson, E. N. Enzyme Microb. Technol.
997, 20, 225.
*
S
(11) Verloop, A. In Drug Design; Academic Press: New York, 1976.
(12) For reviews on Pd-catalyzed aerobic oxidative reactions, see:
(a) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851. (b) Wu,
W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736. (c) Shi, Z.; Zhang, C.;
Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381. (d) Sigman, M. S.;
Jensen, D. R. Acc. Chem. Res. 2006, 39, 221. (e) Gligorich, K. M.;
Sigman, M. S. Angew. Chem., Int. Ed. 2006, 45, 6612. (f) Punniyamur-
thy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329. (g) Stahl, S.
S. Angew. Chem., Int. Ed. 2004, 43, 3400.
AUTHOR INFORMATION
Notes
(
13) For selected reviews on Cu-catalyzed aerobic oxidative
reactions, see: (a) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev.
012, 41, 3464. (b) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew.
The authors declare no competing financial interest.
2
ACKNOWLEDGMENTS
This research was supported by the National Institutes of
Health under Award Number RO1GM063540.
■
Chem., Int. Ed. 2011, 50, 11062.
(14) (a) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.
(b) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,
8
3, 735. (c) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988,
8
8, 899. (d) Glendening, E. D.; Landis, C. R.; Weinhold, F. Wiley
REFERENCES
■
Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 1.
e) Weinhold, F. J. Comput. Chem. 2012, 33, 2363.
(
1) For selected reviews, see: (a) Sigman, M. S.; Werner, E. W. Acc.
(
Chem. Res. 2012, 45, 874. (b) McCartney, D.; Guiry, P. J. Chem. Soc.
Rev. 2011, 40, 5122. (c) Shibasaki, M.; Vogl, E. M.; Ohshima, T. Adv.
Synth. Catal. 2004, 346, 1533. (d) Dounay, A. B.; Overman, L. E.
Chem. Rev. 2003, 103, 2945. (e) Beletskaya, I. P.; Cheprakov, A. V.
Chem. Rev. 2000, 100, 3009.
(
2) For selected reviews, see: (a) Sun, Y.-W.; Zhu, P.-L.; Xu, Q.; Shi,
M. RSC Adv. 2013, 3, 3153. (b) Hawner, C.; Alexakis, A.
Chem.Commun. 2010, 46, 7295. (c) Harutyunyan, S. R.; den Hartog,
T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108,
2
(
(
(
824. (d) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
3) For other strategies to construct a remote chiral center, see:
a) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 15362.
b) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2009, 131, 14231.
4) For selected examples of using a redox relay strategy, see:
a) Renata, H.; Zhou, Q.; Baran, P. S. Science 2013, 339, 59. (b) Aspin,
(
(
S.; Goutierre, A.-S.; Larini, P.; Jazzar, R.; Baudoin, O. Angew. Chem.,
Int. Ed. 2012, 51, 10808. (c) Stokes, B. J.; Opra, S. M.; Sigman, M. S. J.
Am. Chem. Soc. 2012, 134, 11408. (d) Weinstein, A. B.; Stahl, S. S.
Angew. Chem., Int. Ed. 2012, 51, 11505. (e) McDonald, R. I.; White, P.
B.; Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830.
(
(
f) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. 2010, 49, 5529.
g) Melpolder, J. B.; Heck, R. F. J. Org. Chem. 1976, 41, 265. (h) Heck,
R. F. J. Am. Chem. Soc. 1968, 90, 5526.
5) For recent examples of isomerization/migration in Heck-type
(
reactions, see: (a) Kochi, T.; Hamasaki, T.; Aoyama, Y.; Kawasaki, J.;
Kakiuchi, F. J. Am. Chem. Soc. 2012, 134, 16544. (b) Crawley, M. L.;
Phipps, K. M.; Goljer, I.; Mehlmann, J. F.; Lundquist, J. T.; Ullrich, J.
W.; Yang, C.; Mahaney, P. E. Org. Lett. 2009, 11, 1183.
(
6) For recent examples of highly regioselective or asymmetric Heck
reactions, see: (a) Holder, J. C.; Zou, L.; Marziale, A. N.; Liu, P.; Lan,
Y.; Gatti, M.; Kikushima, K.; Houk, K. N.; Stoltz, B. M. J. Am. Chem.
Soc. 2013, 135, 14996. (b) Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J.
Angew. Chem., Int. Ed. 2012, 51, 5915. (c) Werner, E. W.; Sigman, M.
S. J. Am. Chem. Soc. 2011, 133, 9692. (d) Zhu, C.; Falck, J. R. Angew.
Chem., Int. Ed. 2011, 50, 6626. (e) Yoo, K. S.; O’Neil, J.; Sakaguchi, S.;
Giles, R.; Lee, J. H.; Jung, K. W. J. Org. Chem. 2010, 75, 95.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX