Inorganic Chemistry
Article
than that of the recently reported Zn-pyrazole-adenine
framework (88 cm3 g−1 at 273 K).33 It is interesting that the
C3H8 and C2H6 isotherms at 273 K exhibit an abrupt increase
at P/P0 = 0.51 and 0.47, respectively. Additionally, large
hysteretic desorption behavior is observed in the isotherms of
C3H8 and C2H6 (Figure 8a), suggesting the framework
flexibility and the existence of molecular gates.34 Such behavior
can be attributed to the association with a structural
transformation from the guest-free JXNU-1a to gas-loaded
JXNU-1g. The less porous JXNU-1a can be expanded to more
porous JXNU-1g once gas molecules have been gradually
loaded into the pores. However, this adsorption behavior is
different from that of the reported interdigitated 2D framework
wherein a structural transformation from a nonporous to a
microporous phase is observed.35 With increasing temperature,
the adsorptions of C3H8 and C2H6 gradually decrease but
become more reversible (Figure 8b). It should be noted that
the isotherms for C3H8 and C2H6 at 298 K and for CO2 and
CH4 at all testing temperatures exhibit no hysteretic profile
(Figure 7a and Figure 8b). As is well-known, the adsorption
properties are related to the interactions between gas molecules
with the frameworks, and the gate-opening pressure is sensitive
to the property of the gas adsorbed. The larger gas molecules
(such as C3H8 and C2H6) commonly have strong interactions
with the host frameworks, thus the hysteresis will be obvious,
whereas at higher temperatures such phenomena will not be
very obvious or not be observed at all due to the lower host−
guest interactions and much higher gate-opening pressure.
ACKNOWLEDGMENTS
■
This work was supported by the NNSF of China (Grants
21361011, 21101081, and 21561015), the NSF of Jiangxi
(Grant 20151BAB203002), the Young Scientist Training
Project of Jiangxi Province (Grant 20153BCB23017), and the
project of Education Department of Jiangxi (Grant GJJ14235).
REFERENCES
■
(1) Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets;
Oxford University Press: Oxford, UK, 2006.
(2) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. J.
Am. Chem. Soc. 2003, 125, 8694−8695.
́
(3) Bartolome, J.; Luis, F.; Fernandez, J. F., Eds. Molecular Magnets:
Physics and Aplications; Springer-Verlag: Berlin, 2014.
(4) (a) Sorace, L.; Benelli, C.; Gatteschi, D. Chem. Soc. Rev. 2011, 40,
3092−3104. (b) Woodruff, D. N.; Winpenny, R. E. P.; Layfield, R. A.
Chem. Rev. 2013, 113, 5110−5148. (c) Habib, F.; Murugesu, M. Chem.
Soc. Rev. 2013, 42, 3278−3288. (d) Luzon, J.; Sessoli, R. Dalton Trans.
2012, 41, 13556−13567.
(5) (a) Jurca, T.; Farghal, A.; Lin, P. H.; Korobkov, I.; Murugesu, M.;
Richeson, D. S. J. Am. Chem. Soc. 2011, 133, 15814−15817.
(b) Zadrozny, J. M.; Long, J. R. J. Am. Chem. Soc. 2011, 133,
20732−20734. (c) Habib, F.; Luca, O. R.; Vieru, V.; Shiddiq, M.;
Korobkov, I.; Gorelsky, S. I.; Takase, M. K.; Chibotaru, L. F.; Hill, S.;
Crabtree, R. H.; Murugesu, M. Angew. Chem., Int. Ed. 2013, 52,
11290−11293. (d) Zhu, Y. Y.; Zhang, Y. Q.; Yin, T. T.; Gao, C.;
Wang, B. W.; Gao, S. Inorg. Chem. 2015, 54, 5475−5486. (e) Nemec,
́ ̌
I.; Marx, R.; Herchel, R.; Neugebauer, P.; Slageren, J.; Travnícek, Z.
Dalton Trans. 2015, 44, 15014−15021. (f) Bar, A. K.; Pichon, C.;
(6) (a) Yin, D. D.; Chen, Q.; Meng, Y. S.; Sun, H. L.; Zhang, Y. Q.;
Gao, S. Chem. Sci. 2015, 6, 3095−3101. (b) Liu, S. J.; Zhao, J. P.; Song,
W. C.; Han, S. D.; Liu, Z. Y.; Bu, X. H. Inorg. Chem. 2013, 52, 2103−
2109.
CONCLUSIONS
■
A novel cobalt(II) compound, {[Co(bmzbc)2]·2DMF}n
(JXNU-1), displays field-induced slow magnetic relaxation
resulting from the anisotropic Co(II) ions which behave as SIM
units. The rod-like bmzbc− ligand spatially separates the
magnetic ions in a well-defined network, which provides an
approach to obtaining independent single-ion magnets. More-
over, the 3D porous packing framework shows abrupt changes
in its adsorption isotherms with guest-dependent gate-opening
pressure. This work demonstrates a rare example of bifunc-
tional materials, which opens up new opportunities in the
preparation of the multifunctional molecular materials with
SIM and porosity.
(7) (a) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M.
Science 2013, 341, 1230444−1230444. (b) Zhang, J. P.; Zhang, Y. B.;
Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001−1033. (c) Li, J. R.;
Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869−932.
(8) (a) Tanaka, D.; Nakagawa, K.; Higuchi, M.; Horike, S.; Kubota,
Y.; Kobayashi, T. C.; Takata, M.; Kitagawa, S. Angew. Chem., Int. Ed.
2008, 47, 3914−3918. (b) Horike, S.; Tanaka, D.; Nakagawa, K.;
Kitagawa, S. Chem. Commun. 2007, 3395−3397.
(9) Wang, Z.; Zhang, B.; Fujiwara, H.; Kobayashi, H.; Kurmoo, M.
Chem. Commun. 2004, 416−417.
(10) Wang, Y.-L.; Fu, J.-H.; Wei, J.-J.; Xu, X.; Li, X.-F.; Liu, Q.-Y.
Cryst. Growth Des. 2012, 12, 4663−4668.
(11) Aijaz, A.; Lama, P.; Saudo, E. C.; Mishra, R.; Bharadwaj, P. K.
New J. Chem. 2010, 34, 2502−2514.
ASSOCIATED CONTENT
■
(12) Kahn, O. Molecular Magnetism; VCH: Weinheim, Germany,
1993.
S
* Supporting Information
The Supporting Information is available free of charge on the
(13) APEX2, SADABS and SAINT; Bruker AXS Inc.: Madison, WI,
2008.
(14) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr.
2008, A64, 112−122.
(15) Van der Sluis, P.; Spek, A. L. Acta Crystallogr., Sect. A: Found.
Crystallogr. 1990, 46, 194−201.
Experimental details, structural and magnetic character-
ization, theoretical calculation (PDF)
X-ray crystallographic files in CIF format, TGA curve,
(16) MOLCAS: A Program Package for Computational Chemistry:
Karlstrom, G.; Lindh, R.; Malmqvist, P. A.; Roos, B. O.; Ryde, U.;
Veryazov, V.; Widmark, P. O.; Cossi, M.; Schimmelpfennig, B.;
Neogrady, P.; Seijo, L. Comput. Mater. Sci. 2003, 28, 222−239.
(17) (a) Zeng, M.-H.; Zheng, Y.; Tan, Y.-X.; Zhang, W.-X.; He, Y.-P.;
Kurmoo, M. J. Am. Chem. Soc. 2014, 136, 4680−4688. (b) Li, B.; Li,
Z.; Wei, R.-J.; Yu, F.; Chen, X.; Xie, Y.-P.; Zhang, T.-L.; Tao, J. Inorg.
Chem. 2015, 54, 3331−3336. (c) Chen, X.; Li, Z.; Wei, R.-J.; Li, B.;
Zhang, T.-L.; Tao, J. New J. Chem. 2015, 39, 7333−7339.
(18) (a) Huang, X. C.; Zhou, C.; Shao, D.; Wang, X. Y. Inorg. Chem.
2014, 53, 12671−12673. (b) Zadrozny, J. M.; Liu, J.; Piro, N. A.;
Chang, C. J.; Hill, S.; Long, J. R. Chem. Commun. 2012, 48, 3927−
AUTHOR INFORMATION
■
Corresponding Authors
(Q.-Y.L.).
Notes
The authors declare no competing financial interest.
F
Inorg. Chem. XXXX, XXX, XXX−XXX