B. Tinant, J.-P. Declercq and E. I. Marko, Chem. Commun., 2005, 30,
3856–3858.
10 R. Jackstell, S. Harkal, H. Jiao, A. Spannenberg, C. Borgmann,
D. Roettger, F. Nierlich, M. Elliot, S. Niven, K. Cavell, O. Navarro,
M. S. Viciu, S. P. Nolan and M. Beller, Chem.–Eur. J., 2004, 10,
3891–3900.
11 S. Diez-Gonza´lez, H. Kaun, F. K. Zinn, E. D. Stevens and S. P. Nolan,
J. Org. Chem., 2005, 70, 4784–4796.
12 L. Jafarpour, H.-J. Schanz, E. D. Stevens and S. P. Nolan,
Organometallics, 1999, 18, 5416–5425; A. Fu¨rstner, O. R. Thiel,
L. Ackermann, H.-J. Schanz and S. P. Nolan, J. Org. Chem., 2000,
65, 2204–2207.
13 P. de Fre´mont, N. M. Scott, E. D. Stevens and S. P. Nolan,
Organometallics, 2005, 24, 2411–2418.
14 F. Bonati, A. Burini, B. R. Pietroni and B. J. Bovio, J. Organomet.
Chem., 1989, 375, 147–160.
15 H. M. K. Wang and I. J. B. Lin, Organometallics, 1998, 17, 972–975;
P. J. Barnard, M. V. Baker, S. J. Berners-Price, B. W. Skelton and
A. H. White, Dalton Trans., 2004, 1038–1047.
16 For recent examples, see: L. Zhang and S. A. Kozmin, J. Am. Chem.
Soc., 2005, 127, 6962–6963; M. J. Johansson, D. J. Gorin, S. T. Staben
and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 18002–18003.
17 M. R. Fructos, T. R. Belderrain, P. de Fre´mont, N. M. Scott,
S. P. Nolan, M. M. D´ıaz-Requejo and P. J. Pe´rez, Angew. Chem., Int.
Ed., 2005, 44, 5284–5288; N. Marion, S. Diez-Gonza´lez, P. de Fre´mont,
A. R. Noble and S. P. Nolan, Angew. Chem., Int. Ed., 2006, 45, in press.
18 J. Zhang, C.-G. Yang and C. He, J. Am. Chem. Soc., 2006, 128,
1798–1799.
nucleophiles such as alcohols, quantitative conversion was
obtained within minutes. Longer times were required for aniline,
whereas for tert-butylamine, incomplete conversion was observed
even after 24 hours. A similar result was found with styrene, for
which three days were required for complete conversion into
cyclopropanes. This trend could be attributed to the ease of
replacement of the coordinated acetonitrile in 1 by the substrate. In
accordance with this, the use of more weakly coordinating
molecules such benzene or 2,3-dimethylbenzene has led to
undetectable yields; only very minor amounts of diethyl fumarate
and maleate were detected by GC after several days, with most of
the initial EDA remaining in solution. However, an additional
experiment strongly suggests that this coordination of the substrate
is not the only factor at play. The use of an equimolar mixture of
IPrAuCl and NaBAr4 as the catalyst in the reaction of styrene and
EDA, with a five-fold excess of added acetonitrile, did not affect
the course of the reaction, and led to the same mixture of products
found in the absence of acetonitrile. We strongly suspect at this
point that the counterion plays an important role in this catalytic
transformation, a feature that is currently under investigation.
In conclusion, we have isolated, characterized by NMR
spectroscopy, and for one example by X-ray diffraction, well-
defined cationic (NHC)Au(I)(S)X complexes which are postulated
as active catalysts in numerous gold-mediated organic transforma-
tions. The well-defined, isolated species IPrAu(NCMe)PF6 (1) has
been tested as catalyst for the carbene transfer reaction from EDA.
The results suggest a large effect of the counterion on this
transformation when compared with the already reported in situ-
generated IPrAuCl + NaBAr4 system.17 Studies aimed at exploring
this relative stability issue, as well as investigations focusing on the
reactivity of NHC–Au complexes in organic chemistry, are
presently ongoing in our laboratories.
19 C. Ferrer and A. M. Echavarren, Angew. Chem., Int. Ed., 2006, 45,
1105–1109.
20 M. V. Baker, P. J. Barnard, S. K. Brayshaw, J. L. Hickey, B. W. Skelton
and A. H. White, Dalton Trans., 2005, 37–43. The existence of a cationic
species such as [NHCAu(NCMe]Cl cannot be excluded at this point,
and counterion and solvent effects are presently being examined.
21 N. Me´zaille, L. Ricard and F. Gagosz, Org. Lett., 2005, 7, 4133–4136.
22 In a scintillation vial in air, (NHC)AuCl (1 equiv.) is dissolved in 2 mL
of acetonitrile and AgX (1 equiv.) added. The reaction is stirred for one
minute and filtered over Celite to give a colorless solution. Complete
removal of the solvent under vacuum leads to the isolation of a white
powder that rapidly decomposes (turning grey or purple). Slow solvent
evaporation leads to formation of crystals of the desired product,
[(IPrAu)+(NCMe)][PF62] (1): 1H NMR (400 MHz, CD3CN, ppm) 7.66
(s, 2H, CH-imidazole), 7.63 (t, J = 8.0 Hz, 2H, CH-aromatic), 7.45 (d,
J = 8.0 Hz, 2H, CH-aromatic), 2.51 (sept, J = 6.8 Hz, 4H, CH(CH3)2),
1.31 (d, J = 6.8 Hz, 12H, CH(CH3)2) and 1.26 (d, J = 6.8 Hz, 12H,
CH(CH3)2);13C NMR (100 MHz, CDCl3, ppm) 167.6 (s, C-carbene),
148.1 (s, CH-aromatic), 135.4 (s, CH-aromatic), 132.3 (s, CH-aromatic),
127.4 (s, CH-aromatic), 126.6 (s, CH-imidazole), 28.9 (s, CH(CH3)2),
23.9 (s, CH(CH3)2) and 23.3 (s, CH (CH3)2).
The National Science Foundation is gratefully acknowledged
for the financial support of this work, as are Umicore AG, Eli Lilly
and Boehringer Ingelheim Pharmaceuticals for materials support
and unrestricted grants. We wish to thank the University of
Ottawa and its Chemistry Department for hosting our group
during our time away from the University of New Orleans.
23 R. Bertani, R. A. Michelin, M. Mozzon, A. Sassi, M. Basato, A. Biffis,
G. Martinati and Z. Zecca, Inorg. Chem. Commun., 2001, 4, 281–284;
R. Bertani, M. Biasioli, K. Darini, R. A. Michelin, M. Mozzon,
F. Visentin and L. Zanotto, J. Organomet. Chem., 2002, 642, 32–39.
24 M. S. Viciu, F. Kauer-Zinn, E. D. Stevens and S. P. Nolan,
Organometallics, 2003, 22, 3175–3177.
Notes and references
1 A. J. Arduengo, III, R. L. Harlow and M. Kline, J. Am. Chem. Soc.,
1991, 113, 361–363.
2 R. Dorta, E. D. Stevens, C. D. Hoff and S. P. Nolan, J. Am. Chem.
Soc., 2003, 125, 10490–10491.
25 S. Kobayashi, K. Morikawa and T. Saegusa, Macromolecules, 1975, 8,
954–956.
3 N. M. Scott, R. Dorta, E. D. Stevens, A. Correa, L. Cavallo and
S. P. Nolan, J. Am. Chem. Soc., 2005, 127, 3516–3526.
4 R. F. R. Jazzar, M. Varrone, A. D. Burrows, S. A. McGregor,
M. F. Mahon and M. K. Whittlesey, Inorg. Chim. Acta, 2006, 359,
815–820.
5 R. Dorta, E. D. Stevens and S. P. Nolan, J. Am. Chem. Soc., 2004, 126,
5054–5055.
6 H. Kaur, F. Kauer-Zinn, E. D. Stevens and S. P. Nolan,
Organometallics, 2004, 23, 1157–1160.
7 J. Huang, E. D. Stevens and S. P. Nolan, J. Am. Chem. Soc., 1999, 121,
2674–2678.
8 M. S. Viciu, R. F. Germaneau, O. Navarro-Ferna´ndez, E. D. Stevens
and S. P. Nolan, Organometallics, 2002, 21, 5470–5472; O. Navarro,
N. Marion, N. M. Scott, J. Gonza´lez, D. Amoroso, A. Bell and
S. P. Nolan, Tetrahedron, 2005, 61, 9716–9722.
9 J. W. Sprengers, M. J. Maayke, M. A. Duin, J. C. Kingsley and
J. C. Elsevier, J. Organomet. Chem., 2003, 679, 149–152; O. Busine,
G. Berthon-Gelloz, J.-F. Briere, S. Sterin, G. Mignani, P. Branlard,
26 I. Kuntz, J. Polym. Sci., Part B: Polym. Lett., 1966, 4, 427–430;
V. M. Siderko and V. P. Mardykin, Vestn. Beloruss. Gos. Univ. Ser. 2,
1970, 2, 35–37.
27 Crystal data for 1: C31H42AuN4PF6, M = 812.62, monoclinic, space
group P21/n, a = 8.9662(6), b = 18.347(1), c = 21.693(2) s, b =
96.841(1)u, V = 3544.0(4) s3, T = 298(2) K, Z = 4, m = 4.254 mm21
,
53909 reflections measured using a Bruker SMART 1K CCD
diffractometer, 4626 unique (Rint = 0.062), R1 = 0.0493 for all data,
wR2 (all data) = 0.1101. CCDC 296436. For crystallographic data in
CIF or other electronic format see DOI: 10.1039/b601547f.
28 W. Conzelmann, W. Hiller and J. Stra¨hle, Z. Anorg. Allg. Chem., 1982,
485, 81–87; P. W. R. Corfield and H. M. M. Shearer, Acta Crystallogr.,
1967, 23, 156–162.
29 D. M. P. Mingos and J. Yau, J. Organomet. Chem., 1994, 479,
C16–C17; S. Ahrland, K. Nilsson, I. Person, A. Yushi and J. E. Penner-
Hahn, Inorg. Chem., 1989, 28, 1833–1838.
30 Two molecules of acetonitrile are present in the asymmetric unit cell.
One is bound to the gold, the other is a solvent of co-crystalization.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 2045–2047 | 2047