(n = 0, 1, or 2) and Terminal Cyclometallating Tridentate N−C−N Ligands, Inorganic Chemistry,
45 (2006) 10990-10997.
[27] A. Jacques, A. Kirsch-De Mesmaeker, B. Elias, Selective DNA Purine Base Photooxidation
by Bis-terdentate Iridium(III) Polypyridyl and Cyclometalated Complexes, Inorganic Chemistry,
53 (2014) 1507-1512.
[28] A.K. Pal, G.S. Hanan, Design, synthesis and excited-state properties of mononuclear Ru(ii)
complexes of tridentate heterocyclic ligands, Chemical Society Reviews, 43 (2014) 6184-6197.
[29] M. Polson, S. Fracasso, V. Bertolasi, M. Ravaglia, F. Scandola, Iridium Cyclometalated
Complexes with Axial Symmetry. Synthesis and Photophysical Properties of a trans-
Biscyclometalated Complex Containing the Terdentate Ligand 2,6-Diphenylpyridine, Inorganic
Chemistry, 43 (2004) 1950-1956.
[30] M. Polson, M. Ravaglia, S. Fracasso, M. Garavelli, F. Scandola, Iridium Cyclometalated
Complexes with Axial Symmetry:ꢀ Time-Dependent Density Functional Theory Investigation of
trans-Bis-Cyclometalated Complexes Containing the Tridentate Ligand 2,6-Diphenylpyridine,
Inorganic Chemistry, 44 (2005) 1282-1289.
[31] J. Wang, G.S. Hanan, A Facile Route to Sterically Hindered and Non-Hindered 4′ -Aryl-
2,2′ :6′ ,2′ ′ -Terpyridines, Synlett, 2005 (2005) 1251-1254.
[32] M. Weiss, Acetic Acid—Ammonium Acetate Reactions. An Improved Chichibabin
Pyridine Synthesis1, Journal of the American Chemical Society, 74 (1952) 200-202.
[33] M. Kobayashi, S. Masaoka, K. Sakai, Synthesis, crystal structure, spectroscopic and
electrochemical properties, and H2-evolving activity of a new [PtCl(terpyridine)]+ derivative
with viologen-like redox properties, Dalton Transactions, 41 (2012) 4903-4911.
[34] M. Adib, H. Tahermansouri, S.A. Koloogani, B. Mohammadi, H.R. Bijanzadeh, Kröhnke
pyridines: an efficient solvent-free synthesis of 2,4,6-triarylpyridines, Tetrahedron Letters, 47
(2006) 5957-5960.
Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, . E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.;
Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi,
R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,
M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;
Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.;
Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
[36] A.D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, The
Journal of Chemical Physics, 98 (1993) 5648-5652.
[37] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula
into a functional of the electron density, Physical Review B, 37 (1988) 785-789.
[38] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Results obtained with the correlation energy
density functionals of becke and Lee, Yang and Parr, Chemical Physics Letters, 157 (1989) 200-
206.
[39] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review, 136 (1964) B864-
B871.
[40] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation
Effects, Physical Review, 140 (1965) A1133-A1138.
28