Please do not adjust margins
Chemical Science
Page 10 of 11
DOI: 10.1039/C8SC01244J
ARTICLE
Journal Name
22
M. Ortiz-Soto, E., C. Possiel, J. Gorl, A. Vogel, R. Schmiedel
and J. Seibel, Glycobiology, 2017, DOI:
10.1093/glycob/cwx050.
spectrometer at 25 °C. Proton chemical shifts (δ scale) are
expressed in parts per million (ppm) and were determined
relative to a residual protic solvent as an internal reference
1
23
24
25
26
27
28
29
C. P. Strube, A. Homann, M. Gamer, D. Jahn, J. Seibel and
D. W. Heinz, J. Biol. Chem., 2011, 286, 17593-17600.
L. K. Ozimek, S. Kralj, T. Kaper, M. J. E. C. van der Maarel
and L. Dijkhuizen, FEBS J., 2006, 273, 4104-4113.
H. Ban, M. Nagano, J. Gavrilyuk, W. Hakamata, T. Inokuma
and C. F. Barbas, Bioconjugate Chem., 2013, 24, 520-532.
R. Dahl, K. K. Baldridge and N. S. Finney, Synthesis, 2010,
13, 2292-2296.
S. Sato, K. Nakamura and H. Nakamura, ACS Chem. Biol.,
2015, 10, 2633-2640.
H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem.
Int. Ed. Engl., 2001, 40, 2004-2021.
E. Raga-Carbajal, E. Carrillo-Nava, M. Costas, J. Porras-
Dominguez, A. Lopez-Munguia and C. Olvera,
Glycobiology, 2016, 26, 377-385.
D. Goldman, N. Lavid, A. Schwartz, G. Shoham, D. Danino
and Y. Shoham, J. Biol. Chem., 2008, 283, 32209-32217.
M. Vivoli, H. R. Novak, J. A. Littlechild and N. J. Harmer,
Jove-J. Vis. Exp., 2014, DOI: ARTN e51809
(CDCl3: δ = 7.26 ppm, MeOD: δ = 3.31 ppm). Data for H-NMR
spectra are listed as follows: chemical shift (δ ppm)
(multiplicity, integration, coupling constants (Hz), assigned
proton). Couplings are indicated as: s = singlet, d = doublet, t =
triplet, m = mulitplet. Carbon nuclear magnetic resonance (13C-
NMR) spectra were recorded with the same BRUKER
spectrometers at 100.9 and 150.9 MHz, respectively. Carbon
chemical shifts (δ scale) are indicated in ppm and calibrated to
the carbon resonance of the respective solvent (CDCl3: δ =
77.16 ppm, MeOD: δ = 49.00 ppm, DMSO-d6: δ = 2.50 ppm).
(Supporting information, Figure 8-11 and Supporting Table 1)
1
S. G. Burton, D. A. Cowan and J. M. Woodley, Nat.
Biotechnol., 2002, 20, 37-45.
30
31
2
3
M. T. Reetz, J. Am. Chem. Soc., 2013, 135, 12480-12496.
C. J. Noren, S. J. Anthonycahill, M. C. Griffith and P. G.
Schultz, Science, 1989, 244, 182-188.
4
5
6
V. W. Cornish, K. M. Hahn and P. G. Schultz, J. Am. Chem.
Soc., 1996, 118, 8150-8151.
I. Kwon and B. Yang, Ind. Eng. Chem. Res., 2017, 56, 6535-
6547.
10.3791/51809.
32
Y. R. Hua and A. H. Flood, Chem. Soc. Rev., 2010, 39, 1262-
1271.
33
E. Krissinel and K. Henrick, J. Mol. Biol., 2007, 372, 774-
797.
T. H. Wright, B. J. Bower, J. M. Chalker, G. J. L. Bernardes,
R. Wiewiora, W. L. Ng, R. Raj, S. Faulkner, M. R. J. Vallee,
A. Phanumartwiwath, O. D. Coleman, M. L. Thezenas, M.
Khan, S. R. G. Galan, L. Lercher, M. W. Schombs, S.
Gerstberger, M. E. Palm-Espling, A. J. Baldwin, B. M.
Kessler, T. D. W. Claridge, S. Mohammed and B. G. Davis,
Science, 2016, 354.
A. Yang, S. Ha, J. Ahn, R. Kim, S. Kim, Y. Lee, J. Kim, D. Soll,
H. Y. Lee and H. S. Park, Science, 2016, 354, 623-626.
K. Wals and H. Ovaa, Front. Chem., 2014, 2.
C. D. Spicer and B. G. Davis, Nat. Commun., 2014, 5.
J. M. Antos, J. M. McFarland, A. T. Iavarone and M. B.
Francis, J. Am. Chem. Soc., 2009, 131, 6301-6308.
K. L. Seim, A. C. Obermeyer and M. B. Francis, J. Am.
Chem. Soc., 2011, 133, 16970-16976.
H. Ban, J. Gavrilyuk and C. F. Barbas, J. Am. Chem. Soc.,
2010, 132, 1523-1525.
S. Meunier, E. Strable and M. G. Finn, Chem. Biol., 2004,
11, 319-326.
S. D. Tilley and M. B. Francis, J Am Chem Soc, 2006, 128,
1080-1081.
N. S. Joshi, L. R. Whitaker and M. B. Francis, J. Am. Chem.
Soc., 2004, 126, 15942-15943.
34
35
G. L. Miller, Anal. Chem., 1959, 31, 426-428.
D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D.
S. Cerruti, T. E. Cheatham, T. A. Darden, R. E. Duke, H.
Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski,
J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand,
T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R.
Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C.
L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang,
R. M. Wolf, X. Wu and P. A. Kollman, University of
California, San Francisco, 2014.
7
8
9
10
36
37
M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch,
E. Zurek and G. R. Hutchison, J. Cheminform., 2012, 4, 17.
J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E.
Hauser and C. Simmerling, J. Chem. Theory Comput., 2015,
11, 3696-3713.
11
12
13
14
15
16
17
18
19
38
39
J. Wang, W. Wang, P. A. Kollman and D. A. Case, J. Mol.
Graph. Model, 2006, 25, 247-260.
J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D.
A. Case, J. Comput. Chem., 2004, 25, 1157-1174.
V. Lombard, H. G. Ramulu, E. Drula, P. M. Coutinho and B.
Henrissat, Nucleic Acids Res., 2014, 42, D490-D495.
A. Homann, R. Biedendieck, S. Gotze, D. Jahn and J. Seibel,
Biochem. J., 2007, 407, 189-198.
E. T. Öner, L. Hernandez and J. Combie, Biotechnol. Adv.,
2016, 34, 827-844.
M. E. Ortiz-Soto, M. Rivera, E. Rudino-Pinera, C. Olvera
and A. Lopez-Munguia, Protein Eng. Des. Sel, 2008, 21,
589-595.
20
21
G. M. T. Calazans, R. C. Lima, F. P. de Franca and C. E.
Lopes, Int. J. Biol. Macromol., 2000, 27, 245-247.
N. Elvassore, A. Bertucco and P. Caliceti, J. Pharm. Sci.,
2001, 90, 1628-1636.
10 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins