Journal of the American Chemical Society
Page 4 of 5
separation kinetics of the second step are inverted relative to those
Angerhofer, A.; Wasielewski, M. R.; Svec, W. A.; Norris, J. R. J. Phys.
Chem. 1995, 99, 4324.
4) (a) Harneit, W. Phys. Rev. A 2002, 65, 032322; (b) Bogani, L.;
Wernsdorfer, W. Nat Mater 2008, 7, 179; (c) Kobr, L.; Gardner, D. M.;
Smeigh, A. L.; Dyar, S. M.; Karlen, S. D.; Carmieli, R.; Wasielewski, M.
R. J. Am. Chem. Soc. 2012, 134, 12430; (d) Krzyaniak, M. D.; Kobr, L.;
Rugg, B. K.; Phelan, B. T.; Margulies, E. A.; Nelson, J. N.; Young, R. M.;
Wasielewski, M. R. J. Mater. Chem. C 2015, 3, 7962.
+• 1
ꢀ•
•
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
of the first step, the population of D ꢀ (A ꢀR ) present at any
given time is very small, so that the fsTA spectrum showing the
initial chargeꢀseparated state is completely dominated by the popꢀ
(
+• 3
ꢀ•
•
ulation of D ꢀ (A ꢀR ). The population data were fit to a kinetic
+
• 3
ꢀ•
•
+•
model in which the separate populations of D ꢀ (A ꢀR ) and D ꢀ
1
ꢀ•
•
(
A ꢀR ) were allowed to vary (see SI). The solid lines in Figure
b are the results of this fit and show that the D ꢀAꢀR yield is
+•
ꢀ
5
(5) (a) Salikhov, K. M.; Golbeck, J. H.; Stehlik, D. Appl. Magn. Res. 2007,
3
1, 237; (b) Kandrashkin, Y. E.; Salikhov, K. M. Appl. Magn. Res. 2010,
37, 549.
6) (a) Closs, G. L.; Forbes, M. D. E.; Norris, J. R. J. Phys. Chem. 1987,
1, 3592; (b) Buckley, C. D.; Hunter, D. A.; Hore, P. J.; McLauchlan, K.
0
.23 ± 0.02, in close agreement with the 0.25 yield predicted from
the spin statistics of two uncorrelated spins.
(
9
•
In summary, the reversible reduction of a stable radical R by a
•
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
covalently attached singlet SCRP was observed. The yield of R
reduction is limited by the statistical population of (A ꢀR ),
consistent with the reactions D ꢀA ꢀR → DꢀAꢀR and D ꢀA ꢀR
A. Chem. Phys. Lett. 1987, 135, 307; (c) Till, U.; Hore, P. J. Mol. Phys.
1997, 90, 289.
(7) (a) Abe, M. Chem. Rev. 2013, 113, 7011; (b) Mizuno, T.; Abe, M.;
Ikeda, N. Aust. J. Chem. 2015, 68, 1700.
1,3
ꢀ•
•
+•
ꢀ•
•
•
+•
ꢀ•
•
+•
ꢀ
1,3
ꢀ•
•
→ D ꢀAꢀR being much faster than (A ꢀR ) SOꢀISC. In addiꢀ
tion, no evidence is found for spin state mixing, most likely beꢀ
cause JDA and JAR are sufficiently large to preclude spin dynamics
occurring on the ultrafast time scale of the electron transfer reacꢀ
tions observed in this system. The ability to carry out spinꢀ
selective redox reactions between a SCRP and a stable third radiꢀ
cal makes it possible to explore spin coherence phenomena in
(8) (a) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J.
Phys. Chem. Ref. Data 1988, 17, 513; (b) Ichino, T.; Fessenden, R. W. J.
Phys. Chem. A 2007, 111, 2527.
(9) (a) Xu, Z.; Hu, B. Adv. Funct. Mater. 2008, 18, 2611; (b) Cho, N.;
Schlenker, C. W.; Knesting, K. M.; Koelsch, P.; Yip, H.ꢀL.; Ginger, D. S.;
Jen, A. K. Y. Adv. Ener. Mater. 2014, 4, 1301857; (c) Herring, T. W.;
Lee, S. Y.; McCamey, D. R.; Taylor, P. C.; Lips, K.; Hu, J.; Zhu, F.;
Madan, A.; Boehme, C. Phys. Rev. B 2009, 79, 195205; (d) Cozens, F. L.;
Scaiano, J. C. J. Am. Chem. Soc. 1993, 115, 5204; (e) Margulis, L. A.;
Khudyakov, I. V.; Kuzmin, V. A. Chem. Phys. Lett. 1986, 124, 483; (f)
Borovkov, V. I.; Ivanishko, I. S.; Bagryansky, V. A.; Molin, Y. N. J.
Phys. Chem. A 2013, 117, 1692; (g) Forbes, M. D. E.; Jarocha, L. E.; Sim,
S.; Tarasov, V. F. Adv. Phys. Org. Chem. 2013, 47, 1; (h) Tarasov, V. F.;
Jarocha, L. E.; Avdievich, N. I.; Forbes, M. D. E. Photochem. Photobiol.
Sci. 2014, 13, 439; (i) Tarasov, V. F.; Jarocha, L. E.; Forbes, M. D. E.
Photochem. Photobiol. Sci. 2014, 13, 454.
+•
ꢀ
systems having longꢀlived D ꢀAꢀR states as well as perform
novel QIP experiments using pulseꢀEPR spectroscopy.
ASSOCIATED CONTENT
Supporting Information
Supporting Information is available free of charge on the ACS
Publications website at DOI: 10.1021/xxxx.xxxxxx. Experimental
details and characterization for new compounds as well as NMR
spectra, electrochemical measurements, additional transient abꢀ
sorption data, kinetic modeling, and DFT calculations.
(10) (a) Corvaja, C.; Maggini, M.; Ruzzi, M.; Scorrano, G.; Toffoletti, A.
Appl. Magn. Res. 1997, 12, 477; (b) Horwitz, N. E.; Phelan, B. T.; Nelson,
J. N.; Krzyaniak, M. D.; Wasielewski, M. R. J. Phys. Chem. A 2016, 120,
2
841; (c) Weiss, E. A.; Chernick, E. T.; Wasielewski, M. R. J. Am. Chem.
Soc. 2004, 126, 2326; (d) Chernick, E. T.; Mi, Q.; Kelley, R. F.; Weiss, E.
A.; Jones, B. A.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R. J. Am.
Chem. Soc. 2006, 128, 4356; (e) Ishii, K.; Hirose, Y.; Kobayashi, N. J.
Phys. Chem. A 1999, 103, 1986.
(11) (a) Wohlgenannt, M.; Jiang, X. M.; Vardeny, Z. V. Physica B:
Condensed Matter 2003, 338, 318; (b) Beljonne, D.; Ye, A.; Shuai, Z.;
Brédas, J. L. Adv. Funct. Mater. 2004, 14, 684; (c) Sun, Y.; Giebink, N.
C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440,
AUTHOR INFORMATION
Corresponding Author
mꢀwasielewski@northwestern.edu
Notes
The authors declare no competing financial interests.
9
08; (d) Kersten, S. P.; Schellekens, A. J.; Koopmans, B.; Bobbert, P. A.
Phys. Rev. Lett. 2011, 106, 197402; (e) Koh, S. E.; Delley, B.;
Medvedeva, J. E.; Facchetti, A.; Freeman, A. J.; Marks, T. J.; Ratner, M.
A. J. Phys. Chem. B 2006, 110, 24361; (f) Rao, A.; Chow, P. C.; Gelinas,
S.; Schlenker, C. W.; Li, C. Z.; Yip, H. L.; Jen, A. K.; Ginger, D. S.;
Friend, R. H. Nature 2013, 500, 435.
ACKNOWLEDGMENT
T his work was supported by the National Science Foundation
under grant no. CHEꢀ1565925.
(12) (a) Ratera, I.; Veciana, J. Chem. Soc. Rev. 2012, 41, 303; (b) Souto,
REFERENCES
M.; Yuan, L.; Morales, D. C.; Jiang, L.; Ratera, I.; Nijhuis, C. A.;
Veciana, J. J. Am. Chem. Soc. 2017, 139, 4262; (c) Morita, Y.; Nishida,
S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.;
Takui, T. Nat Mater 2011, 10, 947; (d) Nishida, S.; Morita, Y.; Fukui, K.;
Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Angew. Chem., Int. Ed. 2005,
44, 7277.
(1) (a)Boehme, C.; Lupton, J. M. Nature Nanotech. 2013, 8, 612; (b)
Moodera, J. S.; Koopmans, B.; Oppeneer, P. M. MRS Bulletin 2014, 39,
5
78; (c) Naber, W. J. M.; Faez, S.; van der Wiel, W. G. J. Phys. D: Appl.
Phys. 2007, 40, R205; (d) Rocha, A. R.; GarciaꢀSuarez, V. M.; Bailey, S.
W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Nat Mater 2005, 4, 335; (e) Sun,
D.; Ehrenfreund, E.; Vardeny, Z. V. Chem. Commun. 2014, 50, 1781.
(
(
13) (a)Buchachenko, A. L.; Berdinsky, V. L. Chem. Rev. 2002, 102, 603;
b) Griesbeck, A. G. Synlett 2003, 2003, 0451; (c) Hammarström, L. Acc.
(2) (a)Hasharoni, K.; Levanon, H.; Greenfield, S. R.; Gosztola, D. J.;
Chem. Res. 2015, 48, 840.
14) Veldkamp, B. S.; Han, W.ꢀS.; Dyar, S. M.; Eaton, S. W.; Ratner, M.
A.; Wasielewski, M. R. Energy Environ. Sci. 2013, 6, 1917.
Svec, W. A.; Wasielewski, M. R. J. Am. Chem. Soc. 1995, 117, 8055; (b)
Shaakov, S.; Galili, T.; Stavitski, E.; Levanon, H.; Lukas, A.;
Wasielewski, M. R. J. Am. Chem. Soc. 2003, 125, 6563; (c) Carbonera,
D.; Di Valentin, M.; Corvaja, C.; Agostini, G.; Giacometti, G.; Liddell, P.
A.; Kuciauskas, D.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem.
Soc. 1998, 120, 4398; (d) Colvin, M. T.; Ricks, A. B.; Scott, A. M.;
Smeigh, A. L.; Carmieli, R.; Miura, T.; Wasielewski, M. R. J. Am. Chem.
Soc. 2011, 133, 1240.
(
(15) Weller, A. Z. Phys. Chem. 1982, 133, 93.
(16) Colvin, M. T.; Carmieli, R.; Miura, T.; Richert, S.; Gardner, D. M.;
Smeigh, A. L.; Dyar, S. M.; Conron, S. M.; Ratner, M. A.; Wasielewski,
M. R. J. Phys. Chem. A 2013, 117, 5314.
(3) (a) Hoff, A. J.; Gast, P.; Dzuba, S. A.; Timmel, C. R.; Fursman, C. E.;
Hore, P. J. Spectrochim. Acta, Part A 1998, 54A, 2283; (b) Kothe, G.;
Weber, S.; Ohmes, E.; Thurnauer, M. C.; Norris, J. R. J. Am. Chem. Soc.
1
994, 116, 7729; (c) Laukenmann, K.; Weber, S.; Kothe, G.; Oesterle, C.;
ACS Paragon Plus Environment