Reactivity of Negative Ions with Trifluoromethyl Halides
J. Phys. Chem., Vol. 100, No. 25, 1996 10645
the other reaction channel, in this case halide formation, and
we therefore postulated that the two pathways arise from two
different intermediates.
financial support from the Air Force Office of Scientific
Research is gratefully acknowledged.
-
References and Notes
The slow association reaction of SF6 with CF3I was
discussed in section A.ii.
(1) Morris, R. A. J. Chem. Phys. 1992, 97, 2372.
(2) Morris, R. A.; Viggiano, A. A. J. Phys. Chem. 1994, 98, 3740.
(3) Kornblum, N.; Michel, R. E.; Kerber, R. C. J. Am. Chem. Soc.
1966, 88, 5662.
(4) Russell, G. A.; Danen, W. C. J. Am. Chem. Soc. 1966, 88, 5663.
(5) Bunnett, J. F. Acc. Chem. Res. 1978, 11, 413.
(6) McDonald, R. N.; Chowdhury, A. K.; Gung, W. Y.; DeWitt, K.
D. AdV. Chem. Ser. 1987, 215, 51.
(7) Jones, M. T.; McDonald, R. N.; Schell, P. L.; Ali, M. H. J. Am.
Chem. Soc. 1989, 111, 5983.
V. Collisional Electron Detachment. Collisional electron
detachment from NO- has been the subject of several
studies,11,32-35 and the efficiency of detachment depends on the
particle colliding with the NO-. The NO- detachment energy
is only 0.026 eV,36 essentially equal to kT at room temperature.
Electron detachment from NO- is seen in the present work in
collisions with CF4, with a modest rate constant value of 3.5 ×
10-12 cm3 s-1. No chemical reactions, i.e., bonds broken or
formed, are found for anions in collision with CF4. Since
exothermic reactive channels are available for the other CF3X
species, NO- detachment is preempted by fast reaction. We
cannot, however, rule out a very minor (∼5%) contribution by
NO- detachment in the reactive cases.
(8) Knighton, W. B.; Grimsrud, E. P. J. Am. Chem. Soc. 1992, 114,
2336.
(9) Viggiano, A. A.; Morris, R. A.; Dale, F.; Paulson, J. F.; Giles, K.;
Smith, D.; Su, T. J. Chem. Phys. 1990, 93, 1149.
(10) Smith, D.; Adams, N. G. AdV. At. Mol. Phys. 1988, 24, 1.
(11) McFarland, M.; Dunkin, D. B.; Fehsenfeld, F. C.; Schmeltekopf,
A. L.; Ferguson, E. E. J. Chem. Phys. 1972, 56, 2358.
(12) Viggiano, A. A.; Morris, R. A.; Paulson, J. F.; Ferguson, E. E. J.
Phys. Chem. 1990, 94, 7111.
(13) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data Suppl. 1 1988, 17, 1.
(14) Su, T.; Chesnavich, W. J. J. Chem. Phys. 1982, 76, 5183.
(15) Su, T. J. Chem. Phys. 1988, 89, 5355.
(16) Miller, T. M. In Handbook of Chemistry and Physics; Lide, D. R.,
Ed.; CRC Press: Boca Raton, FL, 1995; pp 10-180.
(17) Preston, H. J. T.; Kaufman, J. J. Chem. Phys. Lett. 1977, 50, 157.
(18) Kuhn, A.; Illenberger, E. J. Phys. Chem. 1989, 93, 7060.
(19) Kuhn, A.; Illenberger, E. J. Chem. Phys. 1990, 93, 357.
(20) Nguyen, M. T.; Ha, T.-K. Chem. Phys. Lett. 1987, 136, 413.
(21) Bohme, D. K.; Mackay, G. I.; Schiff, H. I. J. Chem. Phys. 1980,
73, 4976.
(22) Ikezoe, Y.; Matsuoka, S.; Takebe, M.; Viggiano, A. A. Gas Phase
Ion-Molecule Reaction Rate Constants Through 1986; Maruzen Company,
Ltd.: Tokyo, 1987; see also references therein.
(23) Grimsrud, E. P.; Chowdhury, S.; Kebarle, P. J. Chem. Phys. 1985,
83, 1059.
(24) Pan, Y. H.; Ridge, D. P. J. Am. Chem. Soc. 1989, 111, 1150.
(25) Pan, Y. H.; Ridge, D. P. J. Am. Chem. Soc. 1992, 114, 2773.
(26) VanOrden, S. L.; Pope, R. M.; Buckner, S. W. Organometallics
1991, 10, 1089.
Vi. Other Reaction Types. The occurrence of nondissociative
electron transfer (NDET) was discussed in section A.i.
Formation of the dihalide anion ClF- was observed in the
reaction of NO- with CF3Cl but not with the other CF3X and
not from any other anions in the present study. In previous
work on CF3X reactions, we found production of XF- from
O- reactant anion for X ) Cl, Br, and I.1
CF3 product formation occurs in the reactions of Fe- with
-
CF3Cl and CF3Br, with decreasing percentages, respectively.
CF3 is formed in the case of FeCO- + CF3Cl, CF3Br, and
-
CF3I.
In the FeCO- reactions, formation of FeX- is observed along
with three other channels.
Transfer of F+ is a minor pathway in the reaction of SO-
with CF3I.
Conclusions
(27) Bowers, M. T.; Laudenslager, J. B. J. Chem. Phys. 1972, 56, 4711.
(28) Su, T.; Bowers, M. T. J. Chem. Phys. 1973, 58, 3027.
(29) Bates, D. R. J. Phys. B: At. Mol. Phys. 1979, 12, 4135.
(30) Herbst, E. J. Chem. Phys. 1980, 72, 5284.
(31) Keesee, R. G.; Castleman Jr., A. W. J. Phys. Chem. Ref. Data 1986,
15, 1011.
(32) Maricq, M. M.; Tanquay, N. A.; O’Brien, J. C.; Rodday, S. M.;
Rinden, E. J. Chem. Phys. 1989, 90, 3136.
(33) Rinden, E.; Maricq, M. M.; Grabowski, J. J. J. Am. Chem. Soc.
1989, 111, 1203.
(34) Morris, R. A.; Viggiano, A. A.; Paulson, J. F. J. Chem. Phys. 1990,
92, 2342.
(35) Viggiano, A. A.; Morris, R. A.; Paulson, J. F. J. Phys. Chem. 1990,
94, 3286.
A wide range of reactivity is found for the systems studied.
The reactions tend to be fast when nondissociative electron
transfer is energetically allowed, suggesting that reactivity in
these cases is determined by an initial electron transfer mech-
anism. Association is usually most prevalent when nondisso-
ciative electron transfer is endothermic. While the reactions
of SF6 and of the o-, m-, and p-CF3C6H4CN- ions do not
-
-
follow these tendencies, the generally low reactivity of SF6
toward electron transfer is consistent with them, and the behavior
of the CF3C6H4CN- species may be due to similar effects.
(36) Travers, M. J.; Cowles, D. C.; Ellison, G. B. Chem. Phys. Lett.
1989, 164, 449.
Acknowledgment. We thank Amy Miller, Paul Kebarle, and
two reviewers for helpful comments. Technical assistance from
John Williamson and Paul Mundis is appreciated. Partial
JP960355Y