398
(g) A. Varela-Álvarez, J.A. Sordo, E. Piedra, N. Nebra, V. Cadierno, J. Gimeno,
Chem. Eur. J. 17 (2011) 10583–10599;
was investigated, using again the isomerization of 1-octen-3-ol (4a)
into octan-3-one (5a) as model reaction. As shown in Fig. 4, per-
secutive runs after a simple filtration and washing of the solid with
hexanes. In complete accord with the induction period observed
for [RuCl2(ꢀ6-C6H6)(PTA-Me)] (3a) under homogeneous conditions
(see Fig. 2), conversion of 4a into 5a proceeded faster in the second
run than in the first one (1 vs 2 h). From there, the performance of
MK10-3a-2.5 remained stable without appreciable loss of activity
until the tenth recycling cycle. In the eleventh one, more than 90%
conversion was still reached after 4 h of heating, thus leading to
a cumulative TON of 872. We also determined the Ru content in
solution after the first reaction cycle by ICP-MS, and found that
it was only ca. 28 ppm. The excellent recyclability of MK10-3a-
2.5, superior to that shown by the related heterogeneous system
Rh(I)/AISBA-15 described by Martín-Matute and co-workers (up
to 5 consecutive cycles) [17], along with the low metal leaching
observed attest for the high stability and lifetime of our Ru-based
supported catalyst.
(h) L. Bellarosa, J. Díez, J. Gimeno, A. Lledós, F.J. Suárez, G. Ujaque, C. Vicent,
Chem. Eur. J. 18 (2012) 7749–7765.
[3] M. Ito, S. Kitahara, T. Ikariya, J. Am. Chem. Soc. 127 (2005) 6172–6173.
[4] A. Bouziane, T. Régnier, F. Carreaux, B. Carboni, C. Bruneau, J.-L. Renaud, Synlett
(2010) 207–210.
[5] G. Sabitha, S. Nayak, M. Bhikshapathi, J.S. Yadav, Org. Lett. 13 (2011) 382–385.
[6] S. Bovo, A. Scrivanti, M. Bertoldini, V. Beghetto, U. Metteoli, Synthesis (2008)
2547–2550.
[7] N. Tanaka, T. Suzuki, T. Matsumara, Y. Hosoya, M. Nakada, Angew. Chem. Int.
Ed. 48 (2009) 2580–2583.
[8] A.E. Díaz-Álvarez, V. Cadierno, Recent Pat. Catal. 1 (2012) 43–50, and references
cited therein.
[9] See, for example:
(a) K. Tanaka, G.C. Fu, J. Org. Chem. 66 (2001) 8177–8186;
(b) L. Mantilli, D. Gérard, S. Torche, C. Besnard, C. Mazet, Angew. Chem. Int. Ed.
48 (2009) 5143–5147;
(c) L. Mantilli, D. Gérard, S. Torche, C. Besnard, C. Mazet, Chem. Eur. J. 16 (2010)
12736–12745;
(d) M.A. Fernández-Zumel, B. Lastra-Barreira, M. Scheele, J. Díez, P. Crochet, J.
Gimeno, Dalton Trans. 39 (2010) 7780–7785;
(e) L. Mantilli, D. Gérard, S. Torche, C. Besnard, C. Mazet, Pure Appl. Chem. 82
(2010) 1461–1469;
(f) A. Quintard, A. Alexakis, C. Mazet, Angew. Chem. Int. Ed. 50 (2011)
2354–2358;
(g) R. Wu, M.G. Beauchamps, J.M. Laquidara, J.R. Sowa Jr., Angew. Chem. Int. Ed.
51 (2012) 2106–2110;
(h) V. Bizet, X. Pannecoucke, J.-L. Renaud, D. Cahard, Angew. Chem. Int. Ed. 51
(2012) 6467–6470.
[10] M. Benaglia (Ed.), Recoverable and Recyclable Catalysts, Wiley, Chichester,
2009.
4. Conclusion
In summary, a new catalytic system for the selective iso-
merization of allylic alcohols into carbonyl compounds under
homogeneous conditions has been developed by the aid of the
ruthenium(II) complex [RuCl2(ꢀ6-C6H6)(PTA-Me)] (3a). This ionic
species was successfully immobilized onto the smectite-type clay
Montmorillonite K-10 and used as a heterogeneous catalyst in
the redox isomerization process. Remarkably, although the activ-
ity of the heterogeneous system was comparatively lower than
that of the unsupported complex [RuCl2(ꢀ6-C6H6)(PTA-Me)] (3a),
it could be reused for a large number of runs, with negligible loss
of the catalytic activity. Overall, our results, along with those pre-
viously reported by Martín-Matute and co-workers [17], clearly
demonstrate the great potential of inorganic solids supports for the
development of robust heterogeneous catalysts able to promote the
synthetically useful isomerization reaction of allylic alcohols.
[11] P. Crochet, J. Díez, M.A. Fernández-Zúmel, J. Gimeno, Adv. Synth. Catal. 348
(2006) 93–100.
[12] (a) P. Servin, R. Laurent, L. Gonsalvi, M. Tristany, M. Peruzzini, J.-P. Majoral, A.-
M. Caminade, Dalton Trans. (2009) 4432–4434;
(b) P. Servin, R. Laurent, H. Dib, L. Gonsalvi, M. Peruzzini, J.-P. Majoral, A.-M.
Caminade, Tetrahedron Lett. 53 (2012) 3876–3879.
[13] (a) A.K. Zharmagambetova, E.E. Ergozhin, Y.L. Sheludyakov, S.G.
Mukhamedzhanova, I.A. Kurmanbayeva, B.A. Selenova, B.A. Utkelov, J.
Mol. Catal. A: Chem. 177 (2001) 165–170;
(b) M.G. Musolino, P. De Maio, A. Donato, R. Pietropaolo, J. Mol. Catal. A: Chem.
208 (2004) 219–224.
[14] Low selectivities were also attained employing Pd or Pd/Au nanoparticles sta-
bilized by alkanethiolate ligands under H2 atmosphere:
(a) E. Sadeghmoghaddam, K. Gaïeb, Y.-S. Shon, Appl. Catal. A: Gen. 405 (2011)
137–141;
(b) E. Sadeghmoghaddam, C. Lam, D. Choi, Y.-S. Shon, J. Mater. Chem. 21 (2011)
307–312;
(c) E. Sadeghmoghaddam, H. Gu, Y.-S. Shon, ACS Catal. 2 (2012) 1838–1845.
[15] E.G. Corkum, S. Kalapugama, M.J. Hass, S.H. Bergens, RSC Adv.
3473–3476.
2 (2012)
[16] S.E. García-Garrido, J. Francos, V. Cadierno, J.-M. Basset, V. Polshettiwar, Chem-
SusChem 4 (2011) 104–111.
Acknowledgments
[17] S. Sahoo, H. Lundberg, M. Edén, N. Ahlsten, W. Wan, X. Zou, B. Martín-Matute,
ChemCatChem 4 (2012) 243–250.
[18] (a) Ruthenium complexes supported onto amorphous SiO2, showing only a
modest catalytic activity, have also been described: C.M. Standfest-Hauser, T.
Lummerstorfer, R. Schmid, K. Kirchner, H. Hoffmann, M. Puchberger, Monatsh.
Chem. 134 (2003) 1167–1175;
Financial support by the Ministerio de Economía y Competitivi-
dad of Spain (Projects CTQ2010-14796/BQU and CSD2007-00006)
is gratefully acknowledged. L.M.-R. also thanks the Spanish Govern-
ment and the European Social Fund for the award of a PhD grant
(FPI program).
(b) Ru(OH)x supported onto Al2O3 was also employed as a recyclable system in
the reduction of allylic alcohols through a tandem redox isomerization/transfer
hydrogenation reaction: J.W. Kim, T. Koike, M. Kotani, Y. Yamaguchi, N. Mizuno,
Chem. Eur. J. 14 (2008) 4104–4109.
References
[19] For representative recent examples, see:
(a) B. Vijayakumar, G.R. Rao, J. Porous Mater. 19 (2012) 491–497;
(b) A. Romero-Pérez, A. Infantes-Molina, A. Jiménez-López, E.R. Jalil, K. Sapag,
E. Rodríguez-Castellón, Catal. Today 187 (2012) 88–96;
(c) B. Vijayakumar, G.R. Rao, J. Porous Mater. 19 (2012) 233–242;
(d) M. Farias, M. Martinelli, K. Guilherme, Appl. Catal. A: Gen. 40 (2011)
119–127;
[1] For reviews and accounts on this catalytic transformation, see:
(a) R.C. van der Drift, E. Bouwman, E. Drent, J. Organomet. Chem. 650 (2002)
1–24;
(b) R. Uma, C. Crévisy, R. Grée, Chem. Rev. 103 (2003) 27–51;
(c) V. Cadierno, P. Crochet, J. Gimeno, Synlett (2008) 1105–1124;
(d) L. Mantilli, C. Mazet, Chem. Lett. 40 (2011) 341–344;
(e) N. Ahlsten, A. Bartoszewicz, B. Martín-Matute, Dalton Trans. 41 (2012)
1660–1670;
(e) R. Takagi, N. Igata, K. Yamamoto, S. Kojima, J. Mol. Catal. A: Chem. 321 (2010)
71–76.
[20] For reviews on the coordination chemistry of the PTA ligand (1,3,5-triaza-7-
phosphaadamantane) and its derivatives, see:
(f) P. Lorenzo-Luis, A. Romerosa, M. Serrano-Ruiz, ACS Catal.
1079–1086;
2 (2012)
(a) A.D. Phillips, L. Gonsalvi, A. Romerosa, F. Vizza, M. Peruzzini, Coord. Chem.
Rev. 248 (2004) 955–993;
(b) J. Bravo, S. Bolan˜o, L. Gonsalvi, M. Peruzzini, Coord. Chem. Rev. 254 (2010)
555–607.
(g) J. García-Álvarez, S.E. García-Garrido, P. Crochet, V. Cadierno, Curr. Top.
Catal. 10 (2012) 35–56.
[2] For mechanistic studies, see:
(a) B.M. Trost, R.J. Kulawiec, J. Am. Chem. Soc. 115 (1993) 2027–2036;
(b) D.V. McGrath, R.H. Grubbs, Organometallics 13 (1994) 224–235;
(c) V. Branchadell, C. Crévisy, R. Grée, Chem. Eur. J. 9 (2003) 2062–2067;
(d) V. Cadierno, S.E. García-Garrido, J. Gimeno, A. Varela-Álvarez, J.A. Sordo, J.
Am. Chem. Soc. 128 (2006) 1360–1370;
(e) N. Ahlsten, B. Martín-Matute, Adv. Synth. Catal. 351 (2009) 2657–2666;
(f) M. Batuecas, M.A. Esteruelas, C. García-Yebra, E. On˜ate, Organometallics 29
(2010) 2166–2175;
[21] F.P. Pruchnik, P. Smolenski, Appl. Organomet. Chem. 13 (1999) 829–836.
[22] (a) M.A. Bennett, A.K. Smith, J. Chem. Soc. Dalton Trans. (1974) 233–241;
(b) M.A. Bennett, T.-N. Huang, T.W. Matheson, A.K. Smith, Inorg. Synth. 21
(1982) 74–78;
(c) J.W. Hull, W.L. Gladfelter, Organometallics 3 (1984) 605–613.
[23] A. Briot, C. Baehr, R. Brouillard, A. Wagner, C. Mioskowski, J. Org. Chem. 69
(2004) 1374–1377.