1
-Oxoeudesman-4ꢀ,6ꢀ-diyl-S(S )-cyclic sulfite (1). Colourless
logía, Facultad de Ciencias, Universidad de Valencia, Spain,
and was kept in YEPGA medium containing yeast extract
25
solid, mp 88–90 ЊC (from hexane); [α]
νmax (NaCl)/cm 2964, 1717, 1220, 1178 and 1150; δ (300
D
= Ϫ97 (c 1 in CHCl );
3
Ϫ1
(1%), peptone (1%), glucose (2%) and agar (2%) in H O at pH
H
2
MHz; CDCl ; Me Si) 0.95 and 0.97 (3 H each, d, J 6.5, 12-Me
5. In all transformation experiments a beef extract medium
(BEM) containing peptone (0.1%), yeast extract (0.1%), beef
3
4
and 13-Me), 1.05 (1 H, dddd, J7,8β 12.5, J7,11 9.1, J7,8α 3.7, J7,6
.3, 7-H), 1.20 (1 H, ddd, J9α,9β =J9α,8β 13.6, J9α,8α 3.7, 9α-H), 1.44
3 H, s, 14-Me), 1.48 (1 H, d, J5,6 2.4, 5-H), 1.49 (1 H, dddd,
3
(
extract (0.1%) and glucose (0.5%) in H O at pH 5.7 was used.
2
Erlenmeyer flasks (250 ml) containing 80 mL of medium
were inoculated with a dense suspension of the correspond-
ing microorganism. The cultures were incubated by shaking
(150 rpm) at 28 ЊC for 4 days, after which the substrates 1, 2 and
4 (5–10%) in EtOH were added.
J8β,8α 13.9, J8β,9α 13.6, J8β,7 12.5, J8β,9β 3.3, 8β-H), 1.66 (1 H, m,
J11,7 9.1, J11,12 = J11,13 6.5, 11-H), 1.80 (1 H, dddd, J8α,8β 13.9,
J8α,7 = J8α,9α 3.7, J8α,9β 3.3, 8α-H), 1.87 (3 H, s, 15-Me), 2.00 (1 H,
ddd, J9β,9α 13.6, J9β,8β =J9β,8α 3.3, 9β-H), 2.45 (1 H, ddd,
J2β,2α 15.4, J2β,3α 3.7, J2β,3β 2.5, 2β-H) and 5.55 (1 H, dd, J6,7 3.3,
J6,5 2.4, 6-H); δ (75.74 MHz; CDCl ; Me Si) Table 2; m/z
Biotransformation of (S )-cyclic sulfite 1 (36 h)
C
3
4
ϩ
(
HRLSIMS) 323.1296 ([M ϩ 23] . C H O SNa requires
15 24 4
Substrate 1 (375 mg) was dissolved in EtOH (5 ml), distributed
among 5 Erlenmeyer flask cultures of R. nigricans and incu-
bated for 36 h, after which the cultures were filtered and pooled.
The cells were washed thoroughly with water and the liquid was
saturated with NaCl and continuously extracted with CH Cl .
3
23.1293).
-Oxoeudesman-4ꢀ,6ꢀ-diyl-S(R)-cyclic sulfite (2). Colourless
1
25
solid, mp 113–115 ЊC (from hexane); [α] = Ϫ39 (c 1 in CHCl );
νmax (NaCl)/cm 2959, 1711, 1222 and 1192; δ (300 MHz;
D
3
Ϫ1
2
2
H
Extracts were pooled, dried with anhydrous Na SO , and evap-
2
4
CDCl ; Me Si) 0.95 and 0.97 (3 H each, d, J 6.5, 12-Me and
3
4
orated at reduced pressure to give a mixture of compounds,
which was chromatographed on a silica gel column to provide
a mixture of metabolites (258 mg, 65%). From this, after
1
7
3-Me), 1.09 (1 H, dddd, J7,8β 12.6, J7,11 9.1, J7,8α 3.7, J7,6 3.3,
-H), 1.21 (1H, ddd, J9α,9β = J9α,8β 13.6, J9α,8α 3.7, 9α-H), 1.33
(
1 H, d, J5,6 2.4, 5-H), 1.48 (3 H, s, 14-Me), 1.53 (1 H, dddd,
treatment with Ac O–Py, 8α-acetoxy-1-oxoeudesman-4β,6β-
2
J8β,8α = J8β,9α 13.6, J8β,7 12.6, J8β,9β 3.3, 8β-H), 1.74 (3 H, s,
diyl-S(S)-cyclic sulfite (5, 80 mg, 20% of overall yield) and
1
8
5-Me), 1.78 (1 H, dddd, J8α,8β 13.6, J8α,7 = J8α,9α 3.7, J8α,9β 3.3,
α-H), 1.96 (1 H, ddd, J9β,9α 13.6, J9β,8β = J9β,8α 3.3, 9β-H), 2.55
11-hydroxy-1-oxoeudesman-4β,6β-diyl-S(S)-cyclic sulfite (6,
178 mg, 45% of overall yield) were isolated, together with
8α,11-dihydroxy-1-oxoeudesman-4β,6β-diyl-S(S)-cyclic sulfite
(
1 H, ddd, J2β,2α 16.4, J2β,3α = J2β,3β 4.3, 2β-H) and 4.96 (1 H, dd,
J6,7 3.3, J6,5 2.4, 6-H); δ (75.74 MHz; CDCl ; Me Si) Table 2;
C
3
4
(
7, 85 mg, 20%) and 4β,6β,8α,11-tetrahydroxyeudesman-1-one
ϩ
m/z (HRLSIMS) 323.1292 ([M ϩ 23] . C H O SNa requires
15
24
4
(
8, 12 mg, 3%).
3
23.1293).
8
ꢁ-Acetoxy-1-oxoeudesman-4ꢀ,6ꢀ-diyl-S(S )-cyclic sulfite (5).
25
Synthesis of sulfites derivatives (1 and 2)
Colourless solid, mp 124–126 ЊC; [α] = 0 (c 1 in CHCl ); ν
(NaCl)/cm 2961, 1717, 1244 and 1186; δ
D
3 max
Ϫ1
For the biotransformation studies of these cyclic sulfite deriv-
atives (1 and 2), their formation reaction was again carried out
at 0 ЊC. For this, 4β,6β-dihydroxyeudesman-1-one (4, 1.20 g,
(300 MHz; CDCl ;
H 3
Me Si); 0.97 and 1.01 (3 H each, d, J 7.0, 12-Me and 13-Me),
4
1.51 (1 H, d, J5,6 2.9, 5-H), 1.55 (3 H, s, 14-Me), 1.87 (3 H, s,
15-Me), 2.02 (3 H, s, Me-acetoxyl group), 5.28 (1 H, ddd,
J8,7 = J8,9α 11.4, J8,9β 4.1, 8-H) and 5.67 (1 H, dd, J6,7 3.1, J6,5 2.9,
6-H); δ
381.1342 ([M ϩ 23] . C17
4
.7 mmol) was dissolved in dichloromethane (40 mL) and pyri-
dine (11 mL), and then, thionyl chloride (1.67 mL, 23.5 mmol)
was added dropwise. After previously indicated treatment,
(75.74 MHz; CDCl
; Me
Si) Table 2; m/z (HRLSIMS)
SNa requires 381.1348).
C
3
4
ϩ
(
(
S)-cyclic sulfite 1 (638 mg, 45%) and (R)-cyclic sulfite 2
666 mg, 47%) were isolated.
H
26
O
6
1
1-Hydroxy-1-oxoeudesman-4ꢀ,6ꢀ-diyl-S(S )-cyclic sulfite (6).
25
Crystal structure determination of compounds 1 and 2‡
Colourless solid, mp 119–121 ЊC; [α] = Ϫ96 (c 1 in CHCl );
νmax (NaCl)/cm 3516, 2960, 1718, 1220 and 1182; δ (300
MHz; CDCl ; Me Si) 1.25 (1 H, ddd, J = J9α,8β 13.4, J9α,8α 4.3,
D
3
Ϫ1
H
Crystals of compounds 1 and 2 suitable for X-ray diffraction
were obtained by slow evaporation of hexane solution into a
methanol atmosphere.
3
4
9α,9β
9
α-H), 1.33 and 1.26 (3 H each, s, 12-Me and 13-Me), 1.42 (1 H,
ddd, J7,8β 12.3, J7,8α 4.3, J7,6 3.0, 7-H), 1.46 (3 H, s, 14-Me), 1.49
1 H, d, J5,6 2.4, 5-H), 1.84 (1 H, dddd, J8β,8α = J8β,9α 13.4, J8β,7
(
1
1
Crystal data for 1. C H O S, M = 300.4, monoclinic,
15
24
4
2.6, J8β,9β 3.3, 8β-H), 1.88 (3 H, s, 15-Me), 2.06 (1 H, ddd, J9β,9α
3
a = 8.519(1), b = 9.782(1), c = 18.631(2) Å, U = 1552.6(2) Å ,
3.4, J9β,8β = J9β,8α 3.3, 9β-H), 2.46 (1 H, ddd, J2β,2α 16.2, J2β,3α
=
Ϫ3
T = 294(1) K, space group P2 2 2 , Z = 4, D = 1.285 Mg m ,
1
1
1
calc
J2β,3β 2.9, 2β-H) and 5.79 (1 H, dd, J6,7 3.0, J6,5 2.4, 6-H);
δ (75.74 MHz; CDCl ; Me Si) Table 2; m/z (HRLSIMS)
39.1243 ([M ϩ 23] . C H O SNa requires 339.1242).
Ϫ1
F(000) = 648, µ(Mo–Kα) = 0.219 mm , 3332 reflections meas-
C
3
4
ured, 3129 unique (R(int) = 0.0349, R = 0.0396) which were used
ϩ
σ
3
15 24 5
in all calculations. R = 0.0409 (F > 4σ(F )) and 0.0535 (for all).
1
0
0
2
Flack = Ϫ0.20 (9). The final wR(F ) was 0.1086.
8
ꢁ,11-Dihydroxy-1-oxoeudesman-4ꢀ,6ꢀ-diyl-S(S )-cyclic sul-
25
fite (7). Colourless solid, mp 168–170 ЊC; [α] = Ϫ60 (c 1 in
CHCl ); ν (NaCl)/cm 3310, 2971, 1714, 1214 and 1186;
max
δ (300 MHz; CDCl ; Me Si) 1.41 and 1.33 (3 H each, s, 12-Me
and 13-Me), 1.49 (3 H, s, 14-Me), 1.88 (3 H, s, 15-Me), 4,37
1 H, ddd, J8,9α = J8β,7 11.2, J8,9β 4.1, 8β-H) and 5.67 (1 H, dd, J6,7
J6,5 2.9, 6-H); δ (75.74 MHz; CDCl ; Me Si) Table 2; m/z
D
Crystal data for 2. C H O S, M = 300.4, monoclinic,
Ϫ1
15
24
4
3
3
a = 9.321(2), b = 7.996(2), c = 11.132(2) Å, U = 796.2(3) Å ,
Ϫ3
H
3
4
T = 294(1) K, space group P2 , Z = 2, D = 1.253 Mg m ,
1
calc
Ϫ1
F(000) = 324, µ(Mo-Kα) = 0.213 mm , 3060 reflections meas-
(
=
(
3
ured, 3060 unique (R(int) = 0.0000, R = 0.0330) which were used
σ
C
3
4
in all calculations. R = 0.0672 (F > 4σ(F )) and 0.1050 (for all).
ϩ
1
0
0
HRLSIMS) 355.1191 ([M ϩ 23] . C H O SNa requires
2
15 24 6
Flack = Ϫ0.18 (16). The final wR(F ) was 0.1730.
55.1191).
ꢀ,6ꢀ,8ꢁ,11-Tetrahydroxyeudesman-1-one (8). Colourless
Organism, media and culture conditions
4
2
5
Rhizopus nigricans CECT 2672 was obtained from the Colec-
ción Española de Cultivos Tipo, Departamento de Microbio-
solid, mp 194–196 ЊC; [α]
D
= ϩ65 (c 1 in CHCl
cm 3403, 2924, 1712, 1167 and 1072; δ (300 MHz; CDCl
Me Si) 1.18 (1 H, d, J 2.3, 5-H), 1.18 (1 H, dd, J7,8 13.9, J7,6
3
); νmax (NaCl)/
Ϫ1
;
3
H
4
5,6
2
.9, 7-H), 1.27 and 1.25 (3 H each, s, 12-Me and 13-Me), 1.35
‡
CCDC reference numbers 203948 and 203949. See http://www.rsc.org/
(
3 H, s, 15-Me), 1.54 (3 H, s, 14-Me), 1.68 (1 H, ddd, J3α,2β
=
suppdata/ob/b3/b301577g/ for crystallographic data in .cif or other
electronic format.
J
3α,3β 13.9, J3α,2α 4.3, 3α-H), 3.01 (1 H, ddd, J2β,2α = J2β,3α 13.9,
2
318
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 2 3 1 4 – 2 3 2 0