10.1002/ejoc.201700765
European Journal of Organic Chemistry
COMMUNICATION
D. Schmidt, M. Mumby, D. Kratzert, D. Stalke, D. B. Werz, Chem.
Commun. 2013, 49, 4403-4405; e) G. Sathishkannan, K. Srinivasan,
Adv. Synth. Catal. 2014, 356, 729-735; f) A. Ghosh, S. Mandal, P. K.
Chattaraj, P. Banerjee, Org. Lett. 2016, 18, 4940-4943.
Experimental Section
General procedure for the synthesis of pyridopyrimidinones 3: A
mixture of nitrocyclopropane 1 (1 mmol) and 2-aminopyridine 2 (1 mmol)
in water (5 mL) was heated under reflux for 0.5 to 2 h. After the reaction
was complete, the reaction mixture was cooled to room temperature and
extracted with dichloromethane. The organic layer was washed with
water, dried (over anhydrous Na2SO4) and the solvent was removed
under reduced pressure. The crude product was purified by column
[4]
a) V. K. Yadav, V. Sriramurthy, Angew. Chem. Int. Ed. 2004, 43, 2669-
2671; b) C. A. Carson, M. A. Kerr, J. Org. Chem. 2005, 70, 8242-8244;
c) Y.-B. Kang, Y. Tang, X.-L. Sun, Org. Biomol. Chem. 2006, 4, 299-
301; d) K. Sapeta, M. A. Kerr, J. Org. Chem. 2007, 72, 8597-8599; e)
O. A. Ivanova, E. M. Budynina, Y. K. Grishin, I. V. Trushkov, P. V.
Verteletskii, Angew. Chem. Int. Ed. 2008, 47, 1107-1110; f) A. T.
Parsons, J. S. Johnson, J. Am. Chem. Soc. 2009, 131, 3122-3123; g)
F. de Nanteuil, J. Waser, Angew. Chem. Int. Ed. 2011, 50, 12075-
12079; h) J.-P. Qu, Y. Liang, H. Xu, X.-L. Sun, Z.-X. Yu, Y. Tang,
Chem. Eur. J. 2012, 18, 2196-2201; i) H. Xiong, H. Xu, S. Liao, Z. Xie,
Y. Tang, J. Am. Chem. Soc. 2013, 135, 7851-7854; j) S. Chakrabarty, I.
Chatterjee, B. Wibbeling, C. G. Daniliuc, A. Studer, Angew. Chem. Int.
Ed. 2014, 53, 5964-5968; k) E. M. Budynina, O. A. Ivanova, A. O.
Chagarovskiy, Y. K. Grishin, I. V. Trushkov, M. Y. Melnikov, J. Org.
Chem. 2015, 80, 12212-12223; l) L.K. Garve, M. Petzold, P.G. Jones,
D. B. Werz, Org. Lett. 2016, 18, 564-567.
chromatography
using
EtOAc/hexane
(3:2)
to
give
pure
pyridopyrimidinone 3.
Ethyl
2-(benzyl)-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxylate
(3a): Black solid. Yield: 277 mg (90%). M. p.: 106-108 °C. UV (max
,
EtOAc): 354 nm ( = 4310 M-1cm-1). IR (Neat): 1630, 1672, 1719 cm-1.
1H NMR (400 MHz, CDCl3): δ 9.02 (d, J = 7.2 Hz, 1H), 7.76-7.72 (m, 1H),
7.61 (d, J = 8.8 Hz, 1H), 7.35-7.11 (m, 6H), 4.39-4.34 (m, 2H), 4.20 (s,
2H), 1.32 (t, J = 7.2 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl3): δ 166.1,
165.7, 155.8, 150.6, 137.7, 137.6, 129.3, 128.6, 128.4, 127.7, 126.6,
126.4, 116.1, 109.7, 61.6, 42.4, 14.2 ppm. HRMS (ESI) calcd. for
[5]
[6]
a) R. Ballini, A. Palmieri, D. Fiorini, ARKIVOC 2007, vii, 172-194; b) E.
B. Averina, N. V. Yashin, T. S. Kuznetsova, N. S. Zefirov, Russ. Chem.
Rev. 2009, 78, 887-902.
C18H16N2O3: 309.1234 [M
+
H+], found: 309.1244. Anal. calcd. for
C18H16N2O3: C 70.12, H 5.23, N 9.09; found: C 70.25, H 5.33, N 9.21.
a) R. P. Wurz, A. B. Charette, Org. Lett. 2005, 7, 2313-2316; b) O.
Lifchits, A. B. Charette, Org. Lett. 2008, 10, 2809-2812; c) S. S. So, T.
J. Auvil, V. J. Garza, A. E. Mattson, Org. Lett. 2012, 14, 444-447.
O. Lifchits, D. Alberico, I. Zakharian, A. B. Charette, J. Org. Chem.
2008, 73, 6838-6840.
Supporting Information: Experimental details, characterization data
and copies of the 1H and 13C NMR spectra of all products.
[7]
[8]
[9]
A. B. Charette, R. P. Wurz, T. Ollevier, Helv. Chim. Acta. 2002, 85,
4468-4484.
Acknowledgements
A. M. Hardman, S. S. So and A. E. Mattson, Org. Biomol. Chem., 2013,
11, 5793-5797.
The authors thank Science and Engineering Research Board
(SERB), India for financial support and DST-FIST for
instrumentation facilities at School of Chemistry, Bharathidasan
University. S. S. thanks the University Grants Commission
(UGC) for a BSR-RFSMS fellowship.
[10] A. S. Sopova, V. V. Perekalin, O. L. Yurchenko, G. M. Arnautova, Zh.
Org. Khim. 1969, 5, 858-863; Chem. Abstr. 1969, 71, 38394k.
[11] A. S. Sopova, O. S. Bakova, K. L. Metelkina, V. V. Perekalin, Zh. Org.
Khim. 1975, 11, 68-71. Chem. Abstr. 1975, 83, 9406h.
[12] a) T. Selvi, K. Srinivasan, J. Org. Chem. 2014, 79, 3653-3658; b)
T.Selvi, K. Srinivasan, Chem. Commun. 2014, 50, 10845-10848; c) T.
Selvi, K. Srinivasan, Adv. Synth. Catal. 2015, 357, 2111-2118; d) T.
Selvi, G. Vanmathi, K. Srinivasan, RSC Adv. 2015, 5, 49326-49329.
[13] C. Yang, W. Liu, Z. He, Z. He, Org. Lett. 2016, 18, 4936-4939.
[14] a) A. K. Bagdi, S. Santra, K. Monir, A. Hajra, Chem. Commun. 2015,
51, 1555-1575; b) K. Pericherla, P. Keswan, K. Pandey, A. Kumar,
Synthesis 2015, 47, 887-912.
Keywords Donor acceptor cyclopropanes
•
Nitrogen
heterocycles • Ring opening cyclisation • Synthetic methods •
Water chemistry
[1]
a) H.-U. Reissig, R. Zimmer, Chem. Rev. 2003, 103, 1151-1196; b) M.
Yu, B. L. Pagenkopf, Tetrahedron 2005, 61, 321-347; c) M. Y. Mel’nikov,
E. M. Budynina, O. A. Ivanova, I. V. Trushkov, Mendeleev Commun.
2011, 21, 293-301; d) M. A. Cavitt, L. H. Phun, S. France, Chem. Soc.
Rev. 2014, 43, 804-818; e) T. F. Schneider, J. Kaschel, D. B. Werz,
Angew. Chem. Int. Ed. 2014, 53, 5504-5523; f) F. D. Nanteuil, F. D.
Simone, R. Frei, F. Benfatti, E. Serrano, J. Waser, Chem. Commun.
2014, 50, 10912-10928; g) H. K. Grover, M. R. Emmett, M. A. Kerr,
Org. Biomol. Chem. 2015, 13, 655-671; h) N. R. O’Connor, J. L. Wood,
B. M. Stoltz, Isr. J. Chem. 2016, 56, 431-444.
[15] I. Veljkovic, R. Zimmer, H.-U. Reissig, I. Brudgam, H. Hartl, Synthesis
2006, 2677-2684.
[16] For recent examples, see: a) Y. Yang, W.-M. Shu, S.-B. Yu, F. Ni, M.
Gao, A.-X. Wu, Chem. Commun. 2013, 49, 1729-1731; b) A. V.
Gulevich, V. Helan, D. J. Wink, V. Gevorgyan, Org. Lett. 2013, 15, 956-
959; c) Y. Xie, T. Chen, S. Fu, H. Jiang, W. Zeng, Chem. Commun.
2015, 51, 9377-9380; d) J. Zhang, X. Meng, C. Yu, G. Chen, P. Zhao,
RSC Adv. 2015, 5, 87221-87227; e) S. N. Basahel, N. S. Ahmed, K.
Narasimharao, Mokhtar, RSC Adv. 2016, 6, 11921-11932; f) Z. Chen,
Y. Wen, H. Ding, G. Luo, M. Ye, L. Liu, J.Xue, Tetrahedron Lett. 2017,
58, 13-16.
[2]
a) M. R. Emmett, M. A. Kerr, Org. Lett. 2011, 13, 4180-4183; b) M. R.
Emmett, H. K. Grover, M. A. Kerr, J. Org. Chem. 2012, 77, 6634-6637;
c) Y.-Y. Zhou, L.-J. Wang, J. Li, X.-L. Sun, Y. Tang, J. Am. Chem. Soc.
2012, 134, 9066-9069; d) L. K. B.Garve, P. Barkawitz, P. G. Jones, D.
B. Werz, Org. Lett. 2014, 16, 5804-5807; e) Y. Xia, L. Lin, F. Chang, X.
Fu, X. Liu, X. Feng, Angew. Chem. Int. Ed. 2015, 54, 13748-13752; f)
Q.-K. Kang, L. Wang, Q.-J. Liu, J.-F. Li, Y. Tang, J. Am. Chem. Soc.
2015, 137, 14594-14597; g) G. Sathishkannan, V. J. Tamilarasan, K.
Srinivasan, Org. Biomol. Chem. 2016, 15, 1400-1406.
[17] a) M. M. Foreman, J. L. Hall, R. L. Love, Life Sci. 1989, 45, 1263-1270;
b) T. Kawashima, I. Iwamoto, N. Nakagawa, H. Tomioka, S. Yoshida,
Int. Arch. Allergy Immunol. 1994, 103, 405-409; c) G. S. Kumar, G. J.
Dev, N. R. Kumar, D. K. Swaroop, Y. P. Chandra, C. G. Kumar, B.
Narasaiah, Chem. Pharm. Bull. 2015, 63, 584-590.
[18] CCDC 1534729 for compound 3a. See the Supporting Information.
[19] H. Mukherjee, C. A. Martinez, ACS Catal. 2011, 1, 1010-1013.
[20] M. R. Saidi, N. Azizi, E. Akbari, F. Ebrahimi, J. Mol. Catal. A: Chem.
2008, 292, 44-48.
[3]
a) G.-Q. Li, L.-X. Dai, S.-L. You, Org. Lett. 2009, 11, 1623-1625; b) T.
F. Schneider, J. Kaschel, B. Dittrich, D. B. Werz, Org. Lett. 2009, 11,
2317-2320; c) J. Kaschel, T. F. Schneider, D. Kratzert, D. Stalke, D. B.
Werz, Angew. Chem. Int. Ed. 2012, 51, 11153-11156; d) J. Kaschel, C.
[21] The following reaction reported by Sopova and co-workers (Ref. 11)
provided the basic idea for the mechanism.
This article is protected by copyright. All rights reserved.