6
H.-F. YIN ET AL.
[10] Zhang, N.; Qu, F.; Luo, H. Q.; Li, N. B. Sensitive
and Selective Detection of Biothiols Based on
Target-Induced Agglomeration of silver nanoclusters.
Biosens. Bioelectron. 2013, 42, 214–218. DOI: 10.
[21] Yin, K.; Yu, F.; Zhang, W.; Chen, L. A near-Infrared
Ratiometric Fluorescent Probe for Cysteine
Detection over Glutathione Indicating Mitochondrial
Oxidative Stress in Vivo. Biosens. Bioelectron. 2015,
[11] Fan, J.; Wang, Z. Y.; Zhu, H. J.; Fu, N. Y. A Fast
Response Squaraine-Based Colorimetric Probe for
Detection of Thiols in Physiological Conditions.
Sens. Actuators, B. 2013, 188, 886–893. DOI: 10.
[22] Han, X.; Yu, F.; Song, X.; Chen, L. Quantification of
Cysteine Hydropersulfide with a Ratiometric near-
Infrared Fluorescent Probe Based on Selenium-Sulfur
Exchange Reaction. Chem. Sci. 2016, 7, 5098–5107.
[12] Schaeferling, M. The Art of Fluorescence Imaging
with Chemical Sensors. Angew. Chem. Int. Ed. 2012,
[13] Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. New
Sensing Mechanisms for Design of Fluorescent
Chemosensors Emerging in Recent Years. Chem.
Soc. Rev. 2011, 40, 3483–3495. DOI: 10.1039/
[14] Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.;
Urano, Y. New Strategies for Fluorescent Probe
Design in Medical Diagnostic Imaging. Chem. Rev.
[15] Niu, L. Y.; Chen, Y. Z.; Zheng, H. R.; Wu, L. Z.;
Tung, C. H.; Yang, Q. Z. Design Strategies of
Fluorescent Probes for Selective Detection among
Biothiols. Chem. Soc. Rev. 2015, 44, 6143–6160.
[23] Wang, Y.; Zhang, L.; Chen, L. Glutathione
Peroxidase-Activatable Two-Photon Ratiometric
Fluorescent Probe for Redox Mechanism Research in
Aging and Mercury Exposure Mice Models. Anal.
[24] Zhang, X.; Liu, C.; Cai, X.; Tian, B.; Zhu, H.; Chen,
Y.; Sheng, W.; Jia, P.; Li, Z.; Yu, Y.; et al. A Highly
Specific Golgi-Targetable Fluorescent Probe for
Tracking Cysteine Generation during the Golgi
Stress Response. Sens. Actuators, B. 2020, 310,
[25] Wang, Y.; Zhang, L.; Zhang, S.; Liu, Z.; Chen, L.
High Spatiotemporal Resolution Observation of
Glutathione Hydropersulfides in Living Cells and
Tissue via a Two-Photon Ratiometric Fluorescent
Probe. Anal. Chem. 2019, 91, 7812–7818. DOI: 10.
[16] He, L.; Yang, X.; Xu, K.; Lin, W. Improved Aromatic
Substitution-Rearrangement-Based
Ratiometric
[26] Qi, Y.; Huang, Y.; Li, B.; Zeng, F.; Wu, S. Real-Time
Monitoring of Endogenous Cysteine Levels in Vivo
by near-Infrared Turn-On Fluorescent Probe with
Large Stokes Shift. Anal. Chem. 2018, 90, 1014–1020.
[27] Nawimanage, R. R.; Prasai, B.; Hettiarachchi, S. U.;
McCarley, R. L. Cascade Reaction-Based, near-
Infrared Multiphoton Fluorescent Probe for the
Selective Detection of Cysteine. Anal. Chem. 2017,
[28] Pang, L.; Zhou, Y.; Gao, W.; Zhang, J.; Song, H.;
Wang, X.; Wang, Y.; Peng, X. Curcumin-Based
Fluorescent and Colorimetric Probe for Detecting
Cysteine in Living Cells and Zebrafish. Ind. Eng.
[29] Zhang, X.; He, N.; Huang, Y.; Yu, F.; Li, B.; Lv, C.;
Chen, L. Mitochondria-Targeting near-Infrared
Ratiometric Fluorescent Probe for Selective Imaging
of Cysteine in Orthotopic Lung Cancer Mice. Sensors
[30] Zhang, J.; Miao, Y.; Cheng, Z.; Liang, L.; Ma, X.; Liu,
C. A Paper-Based Colorimetric Assay System for
Sensitive Cysteine Detection Using Fluorescent
Probe. Analyst 2020, 145, 1878–1884. DOI: 10.1039/
Fluorescent Cysteine-Specific Probe and Its
Application of Real-Time Imaging under Oxidative
Stress in Living Zebrafish. Anal. Chem. 2017, 89,
[17] Chen, W.; Yue, X.; Zhang, H.; Li, W.; Zhang, L.;
Xiao, Q.; Huang, C.; Sheng, J.; Song, X.
Simultaneous Detection of Glutathione and
Hydrogen Polysulfides from Different Emission
Channels. Anal. Chem. 2017, 89, 12984–12991. DOI:
[18] Mulay, S. V.; Kim, Y.; Choi, M.; Lee, D. Y.; Choi, J.;
Lee, Y.; Jon, S.; Churchill, D. G. Enhanced Doubly
Activated Dual Emission Fluorescent Probes for
Selective Imaging of Glutathione or Cysteine in
Living Systems. Anal. Chem. 2018, 90, 2648–2654.
[19] Kim, Y.; Mulay, S. V.; Choi, M.; Yu, S. B.; Jon, S.;
Churchill, D. G. Exceptional Time Response,
Stability and Selectivity in Doubly-Activated Phenyl
Selenium-Based
Glutathione-Selective
Platform.
Chem. Sci. 2015, 6, 5435–5439. DOI: 10.1039/
[20] Kang, Y. F.; Qiao, H. X.; Meng, Y. L.; Xin, Z. H.; Ge,
L. P.; Dai, M. Y.; He, Z.; Zhang, C. H. Selective
Fluorescent
Detection
of
Cysteine
over
Homocysteine and Glutathione by a Simple and
Sensitive Probe. Aust. J. Chem. 2017, 70, 952–956.
[31] An, J. M.; Kang, S.; Huh, E.; Kim, Y.; Lee, D.; Jo, H.;
Joung, J. F.; Kim, V. J.; Lee, J. Y.; Dho, Y. S.; et al.