Chemistry Letters Vol.34, No.3 (2005)
353
OAc
CO Me
O
O
2
AcO
a
b, c
d
e
CO Me
2
( )-1
2
3
4
5
3
2
1
2
4
OH
OH
OR
OR
OTBDMS
f
g
i
1
5
CHO
6
8
7
1
2
7: R =TBDMS, R =H
6
8
1
2
h
7': R =H, R =TBDMS
6
1
2
7": R =R =TBDMS
OTBDMS
CO Et
OTBDMS
OTBDMS
OH
j
k
l,m
CO Et
2
2
11
9
10
13
OH
O
n
CO H
2
CO H
12
( )-Arohynapene B
2
Scheme 1. Reagents and conditions: (a) H2, 10% Pd/C, benzene, quant. (cis:trans = 19:1) (b) HCꢃCMgBr, THF (c) Ac2O,
DMAP(cat.), pyridine, 72% from 2 (d) CF3CO2Ag(cat.), benzene, reflux, 73% (e) MeO2CCꢃCCO2Me, toluene, reflux, then DBN,
reflux, 42% (f) LiAlH4, Et2O, reflux, 59% (g) TBDMSCl, imidazole, DMF, 48% (h) Bu4NF, THF (i) PCC, CH2Cl2, 79% (j)
(EtO)2P(O)CH2CO2Et, NaH, DME, 91% (k) DIBAL, CH2Cl2, 97% (l) MnO2, benzene (m) (EtO)2P(O)CH2CO2Et, NaH, DME,
84% from 10 (n) LiOH, THF–MeOH–H2O, then Dowex 50W (Hþ form), 50 ꢂC, quant.
ditions, the intramolecular conjugate addition of the hydroxyl
group to the ꢁ-position of the dienylcarboxylate side chain par-
tially occurs to give the dihydroisobenzofuran derivative 13, re-
sulting in a decrease of the yield of 12. This problem, however,
could be solved by the following procedure: the ethyl ester was
first hydrolyzed under basic conditions (LiOH/THF–MeOH–
H2O), and then the reaction mixture was neutralized with ion ex-
change resin (DOWEX 50W Hþ-form). Furthermore, the addi-
tion of excess resin to the reaction mixture, followed by warming
of the mixture to 50 ꢂC led to (ꢁ)-arohynapene B 12 in quanti-
tative yield. The 1H and 13C NMR data of the synthetic sample8
were identical to those reported in the literature.1 Hence, the rel-
ative stereochemistry of the two methyl groups in arohynapene
B could be assigned to be cis.
In summary, we have achieved the total synthesis of (ꢁ)-ar-
ohynapene B (12) from the readily available cis-3,5-dimethylcy-
clohexanone (2) in 12 steps. This route is short and concise, fea-
turing the direct construction of the tetrahydronaphthalene ring
by the Diels–Alder reaction. The resolution of each enantiomer
as well as the elucidation of the absolute configuration of the nat-
ural product is currently underway in our laboratory.
Arimoto, T. Okamura, and D. Uemura, Chem. Lett., 1997, 885.
H. Arimoto, K. Nishimura, M. Kuramoto, and D. Uemura,
Tetrahedron Lett., 39, 9513 (1998).
R. K. Hill and R. M. Carlson, Tetrahedron Lett., 5, 1157 (1964).
R. C. Cookson, M. C. Cramp, and P. J. Parsons, J. Chem. Soc.,
Chem. Commun., 1980, 197.
3
4
5
6
7
See ref. 20 in the following literature, W. S. Mahoney,
D. M. Brestensky, and J. M. Stryker, J. Am. Chem. Soc., 110,
291 (1988).
For the cis-isomer of 6: 1H NMR (CDCl3, 270 MHz) ꢁ 1.05 (d,
3H, J ¼ 6:6 Hz, 6-CH3), 1.24 (d, 3H, J ¼ 7:3 Hz, 8-CH3),
1.08–1.15 (m, 1H, H-7), 1.59–1.65 (m, 1H, H-6), 2.16–2.29
(m, 1H, H-7), 2.37 (dd, 1H, J ¼ 11:9, 15.2 Hz, H-5), 2.63
(ddd, 1H, J ¼ 2:6, 3.3, 15.2 Hz, H-5), 3.36 (dq, 1H, J ¼ 6:6,
7.3 Hz, H-8), 4.64 (d, 1H, J ¼ 11:9 Hz, 1-CH2), 4.65 (d, 1H,
J ¼ 11:9 Hz, 1-CH2), 4.72 (d, 1H, J ¼ 11:9 Hz, 2-CH2), 4.74
(d, 1H, J ¼ 11:9 Hz, 2-CH2), 6.99 (d, 1H, J ¼ 7:9 Hz, H-4),
7.06 (d, 1H, J ¼ 7:9 Hz, H-3).
8
Spectral data of the synthetic arohynapene B (12) 1H NMR
(CDCl3, 270 MHz) ꢁ 1.05 (d, 3H, J ¼ 6:6 Hz), 1.13 (d, 3H,
J ¼ 6:6 Hz), 1.22–1.28 (m, 2H), 2.10–2.19 (m, 1H), 2.33–
2.42 (m, 1H), 2.60–2.68 (m, 1H), 3.16–3.25 (m, 1H), 4.62 (s,
2H), 5.94 (d, 1H, J ¼ 15:8 Hz), 6.56 (dd, 1H, J ¼ 11:2,
15.8 Hz), 7.03 (d, 1H, J ¼ 7:9 Hz), 7.13 (d, 1H, J ¼ 15:8 Hz),
7.20–7.30 (m, 1H), 7.49 (dd, 1H, J ¼ 11:2, 15.2 Hz); 13C NMR
(CDCl3, 100 MHz) ꢁ 22.2, 24.2, 29.6, 30.8, 39.6, 41.4, 63.1,
121.0, 125.8, 128.5, 131.5, 135.0, 136.2, 138.2, 139.0, 140.8,
145.5, 169.4.
We thank the Asahi Kasei Pharma Corporation for their
financial support.
References and Notes
1
R. Masuma, N. Tabata, H. Tomoda, K. Haneda, Y. Iwai, and S.
Omura, J. Antibiot., 47, 46 (1994).
M. Kuramoto, K. Yamada, M. Shikano, K. Yazawa, H.
2
Published on the web (Advance View) February 5, 2005; DOI 10.1246/cl.2005.352