Organic Letters
Letter
In summary, we have successfully developed a new TEMPO-
catalyzed aminophosphinoylation of ethers with amines and H-
Kamal Kaur, P.; Singh, S.; Chakraborti, A. K. MedChemComm 2014,
5
, 665−670.
3
(5) (a) Wang, Q.; Zhu, M.; Zhu, R.; Lu, L.; Yuan, C.; Xing, S.; Fu,
X.; Mei, Y.; Hang, Q. Eur. J. Med. Chem. 2012, 49, 354−364. (b) Arya,
T.; Reddi, R.; Kishor, C.; Ganji, R. J.; Bhukya, S.; Gumpena, R.;
McGowan, S.; Drag, M.; Addlagatta, A. J. Med. Chem. 2015, 58,
phosphine oxides under mild conditions via tandem C(sp )−H
3
and C(sp )−O bond cleavage. The present methodology
provides a facile and efficient approach to access a wide range
of α-aminophosphine oxides in moderate to good yields from
simple starting materials with excellent functional group
tolerance. This reaction can be conducted under metal-free
conditions without any added external oxidant, demonstrating
great potential in practical applications. Further investigation
of the detailed reaction mechanism and synthetic application
are currently underway in our group.
2
350−2357. (c) Weglarz-Tomczak, E.; Vassiliou, S.; Mucha, A.
Bioorg. Med. Chem. Lett. 2016, 26, 4122−4126.
6) (a) Pettersen, D.; Marcolini, M.; Bernardi, L.; Fini, F.; Herrera,
(
R. P.; Sgarzani, V.; Ricci, A. J. Org. Chem. 2006, 71, 6269−6272.
(b) Zhou, Z. Y.; Zhang, H.; Yao, L.; Wen, J. H.; Nie, S. Z.; Zhao, C.
Q. Chirality 2016, 28, 132−135.
(7) (a) Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528−1531.
b) Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669−670.
c) Mu, X. J.; Lei, M. Y.; Zou, J. P.; Zhang, W. Tetrahedron Lett. 2006,
(
(
ASSOCIATED CONTENT
Supporting Information
■
4
(
7, 1125−1127.
*
S
8) (a) Basle, O.; Li, C. J. Chem. Commun. 2009, 4124−4126.
(b) Zhi, H.; Ung, S. P.-M.; Liu, Y.; Zhao, L.; Li, C.-J. Adv. Synth.
Catal. 2016, 358, 2553−2557.
(
9) (a) Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023−6025.
(b) Cheng, M. X.; Ma, R. S.; Yang, Q.; Yang, S. D. Org. Lett. 2016, 18,
3
262−3265. (c) Gu, K.; Zhang, Z.; Bao, Z.; Xing, H.; Yang, Q.; Ren,
Q. Eur. J. Org. Chem. 2016, 2016, 3939−3942. (d) Hu, G.; Chen, W.;
Ma, D.; Zhang, Y.; Xu, P.; Gao, Y.; Zhao, Y. J. Org. Chem. 2016, 81,
1
704−1711. (e) Mao, L. L.; Li, C. C.; Yang, Q.; Cheng, M. X.; Yang,
AUTHOR INFORMATION
■
*
*
S. D. Chem. Commun. 2017, 53, 4473−4476. (f) Xie, L.-Y.; Qu, J.;
Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He,
W.-M. Green Chem. 2018, 20, 760−764. (g) Lin, B.; Shi, S.; Lin, R.;
Cui, Y.; Fang, M.; Tang, G.; Zhao, Y. J. Org. Chem. 2018, 83, 6754−
ORCID
6761. (h) Niu, L.; Wang, S.; Liu, J.; Yi, H.; Liang, X. A.; Liu, T.; Lei,
A. Chem. Commun. 2018, 54, 1659−1662. (i) Zhu, Z. Q.; Xiao, L. J.;
Guo, D.; Chen, X.; Ji, J. J.; Zhu, X.; Xie, Z. B.; Le, Z. G. J. Org. Chem.
2
(
Notes
019, 84, 435−442.
10) (a) Batra, A.; Singh, P.; Singh, K. N. Eur. J. Org. Chem. 2017,
017, 3739−3762. (b) Guo, S. R.; Kumar, P. S.; Yang, M. Adv. Synth.
The authors declare no competing financial interest.
2
Catal. 2017, 359, 2−25. (c) Wu, X. F. Solvents as Reagents in Organic
Synthesis: Reactions and Applications; Wiley: New York, 2018.
ACKNOWLEDGMENTS
■
(d) Muhammad, M. H.; Chen, X.-L.; Yu, B.; Qu, L.-B.; Zhao, Y.-F.
This work was supported by the National Natural Science
Foundation of China (Nos. 21572217 and 21302109),
Institute of Drug Innovation, Chinese Academy of Sciences
Pure Appl. Chem. 2019, 91, 33−41. (e) Li, J. S.; Xue, Y.; Fu, D. M.; Li,
D. L.; Li, Z. W.; Liu, W. D.; Pang, H. L.; Zhang, Y. F.; Cao, Z.; Zhang,
L. RSC Adv. 2014, 4, 54039−54042. (f) Sun, K.; Wang, X.; Li, G.;
Zhu, Z.-H.; Jiang, Y.-Q.; Xiao, B.-B. Chem. Commun. 2014, 50,
(
CASIMM0420152013 and CASIMM0420151009), Strategic
Biological Resources Service Network Program of Chinese
Academy of Sciences (ZSTH-001), and the Natural Science
Foundation of Shandong Province (ZR2018MB009).
1
(
1
2880−12883.
11) (a) Yamada, K.; Yamamoto, Y.; Tomioka, K. Org. Lett. 2003, 5,
797−1799. (b) Yamamoto, Y.; Yamada, K.; Tomioka, K. Tetrahedron
Lett. 2004, 45, 795−797. (c) Buslov, I.; Hu, X. Adv. Synth. Catal.
2014, 356, 3325−3330. (d) Wan, M.; Meng, Z.; Lou, H.; Liu, L.
Angew. Chem., Int. Ed. 2014, 53, 13845−13849. (e) Xie, L.-Y.; Peng,
S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth.
Catal. 2018, 360, 4259−4264. (f) Yue, Q.; Xiao, Z.; Ran, Z.; Yuan, S.;
Zhang, Q.; Li, D. Org. Chem. Front. 2018, 5, 967−971. (g) Ghosh, T.;
Maity, P.; Ranu, B. C. Org. Lett. 2018, 20, 1011−1014.
REFERENCES
■
(
1) (a) Macia, E. Chem. Soc. Rev. 2005, 34, 691−701. (b) Dutartre,
M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771−5794.
(
(
2
c) Ni, H.; Chan, W. L.; Lu, Y. Chem. Rev. 2018, 118, 9344−9411.
d) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem.
015, 80, 5023−5029. (e) Conway, S. J.; Miller, G. J. Nat. Prod. Rep.
2
007, 24, 687−707. (f) Mucha, A.; Kafarski, P.; Berlicki, L. J. Med.
(12) (a) Yamamoto, Y.; Maekawa, M.; Akindele, T.; Yamada, K.;
Tomioka, K. Tetrahedron 2005, 61, 379−384. (b) Yuan, W.; Szabo, K.
́
Chem. 2011, 54, 5955−5980. (g) Zhong, W.-W.; Zhang, Q.; Li, M.-S.;
Hu, D.-Y.; Cheng, M.; Du, F.-T.; Ji, J.-X.; Wei, W. Synth. Commun.
J. ACS Catal. 2016, 6, 6687−6691. (c) An, Z.; Zhao, L.; Wu, M.; Ni,
J.; Qi, Z.; Yu, G.; Yan, R. Chem. Commun. 2017, 53, 11572−11575.
(d) Yan, Y.; Li, Z.; Li, H.; Cui, C.; Shi, M.; Liu, Y. Org. Lett. 2017, 19,
6228−6231. (e) Ye, L.; Cai, S. H.; Wang, D. X.; Wang, Y. Q.; Lai, L.
J.; Feng, C.; Loh, T. P. Org. Lett. 2017, 19, 6164−6167. (f) Li, J.-S.;
Yang, P.-P.; Chen, G.-Q.; Xie, X.-Y.; Li, Z.-W.; Li, W.-S.; Liu, W.-D.
Asian J. Org. Chem. 2019, 8, 246−250.
2
016, 46, 1377−1385. (h) Liu, Y.; Chen, X.-L.; Zeng, F.-L.; Sun, K.;
Qu, C.; Fan, L.-L.; An, Z.-L.; Li, R.; Jing, C.-F.; Wei, S.-K.; Qu, L.-B.;
Yu, B.; Sun, Y.-Q.; Zhao, Y.-F. J. Org. Chem. 2018, 83, 11727−11735.
2) (a) Bhattacharya, A. K.; Rana, K. C.; Pannecouque, C.; De
(
Clercq, E. ChemMedChem 2012, 7, 1601−1611. (b) Lacbay, C. M.;
Mancuso, J.; Lin, Y. S.; Bennett, N.; Gotte, M.; Tsantrizos, Y. S. J.
Med. Chem. 2014, 57, 7435−7449.
(13) Guo, X.; Pan, S.; Liu, J.; Li, Z. J. Org. Chem. 2009, 74, 8848−
8851.
(
3) (a) Gu, L.; Jin, C. Org. Biomol. Chem. 2012, 10, 7098−7102.
(
b) Huang, X. C.; Wang, M.; Pan, Y. M.; Yao, G. Y.; Wang, H. S.;
Tian, X. Y.; Qin, J. K.; Zhang, Y. Eur. J. Med. Chem. 2013, 69, 508−
20. (c) Ye, M. Y.; Yao, G. Y.; Pan, Y. M.; Liao, Z. X.; Zhang, Y.;
Wang, H. S. Eur. J. Med. Chem. 2014, 83, 116−128.
4) (a) Ali, N.; Zakir, S.; Patel, M.; Farooqui, M. Eur. J. Med. Chem.
012, 50, 39−43. (b) Bhagat, S.; Shah, P.; Garg, S. K.; Mishra, S.;
(14) He, R.; Jin, X.; Chen, H.; Huang, Z. T.; Zheng, Q. Y.; Wang, C.
J. Am. Chem. Soc. 2014, 136, 6558−6561.
5
(15) Zhang, J.; Song, C.; Sheng, L.; Liu, P.; Sun, P. J. Org. Chem.
2019, 84, 2191−2199.
(
2
(16) (a) Wei, W.; Ji, J. X. Angew. Chem., Int. Ed. 2011, 50, 9097−
9099. (b) Liu, C.; Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Liu, X.; Wang,
D
Org. Lett. XXXX, XXX, XXX−XXX