Angewandte Chemie International Edition
10.1002/anie.201703812
COMMUNICATION
Reactor I
80 °C
= 1.5 min
Reactor II
25 °C
O
O
O
O
O
1
Keywords: aromatic substitution • ciprofloxacin • continuous
flow • multicomponent reactions • multistep synthesis
t
1
F
F
OEt
NMe
t
2
= 1 min
F
F
OEt
OEt
NMe
F
NH
2
F
6
2
7
4
DIEA
98 %
HNMe
2
[
1]
(a) J. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 2013, 49,
9896-9904. (b) D. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675-680.
(c) I. R. Baxendale, S. V. Ley, A. C. Mansfield, C. D. Smith, Angew. Chem.
Int. Ed. 2009, 48, 4017-4021; Angew. Chem. 2009, 121, 4077-4081. (d)
S. Suga, M. Okajima, K. Fujiwara, J. Yoshida, J. Am. Chem. Soc. 2001,
123, 7941-7942. (e) H. R. Sahoo, J. G. Kralj, K. F. Jensen, Angew. Chem.
Int. Ed. 2007, 46, 5704-5708; Angew. Chem. 2007, 119, 5806-5810. (f)
B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade,
Chem. Rev. 2007, 107, 2300-2318.
O
F
NH
2
O
F
F
Cl
5
DIEA
Cl
Reactor III
25 °C
t = 1 min
3
8
Reactor V
0 °C
= 0.9 min
Reactor IV
180 °C
t
4
O
F
O
8
O
N
O
F
F
t
5
F
= 4.3 min
OEt
NH
OEt
175 psi BPR
N
2
4
HN
8
2 %
96 %
DMA
NaOH
DBU
HN
[2]
D. Webb, T. F. Jamison, Org. Lett. 2012, 14, 568-571.
[
3]
(a) H. Kim, K.-I. Min, K. Inoue, D. J. Im, D.-P. Kim, J. Yoshida, Science
NH
2016, 352, 691-694. (b) A. Nagaki, Y. Takahashi, J. Yoshida, Angew.
O
N
O
O
N
O
O
O
Chem. Int. Ed. 2016, 55, 5327-5331; Angew. Chem. 2016, 128, 5413-
5417. (c) A. Nagaki, D. Ichinari, J. Yoshida, J. Am. Chem. Soc. 2014,
136, 12245-12248. (d) Y. Tomida, A. Nagaki, J. Yoshida, J. Am. Chem.
Soc. 2011, 133, 3744-3747.
offline HCl aq
to pH 7
offline HCl aq
to pH < 3
F
F
F
ONa
OH
OH
N
N
acetone
N
N
HN
HN
H
2
N
12
Cl
1
3
1
ciprofloxacin
5 %
ciprofloxacin hydrochloride
60 %
[
4]
(a) C. Wiles, P. Watts, in Micro Reaction Technology in Organic
Synthesis, CRC Press, Boca Raton, FL, USA, 2011, pp. 1-36. (b) D.
Barrow, S. Taylor, A. Morgan, L. Giles, in Microreactors in Organic
Chemistry and Catalysis, Second Edition (Ed.: T. Wirth), Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, pp. 1-33. (c) B.
Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54,
7
Scheme 5. Flow scheme of continuous total synthesis of ciprofloxacin. 1.0 equiv.
of 7, 1.2 equiv. of 8, 1.15 equiv. of DIEA, 1.25 equiv. of 5, 1.15 equiv. of DIEA,
.2 equiv. of acetyl chloride, 3.5 equiv. of DBU, 3.5 equiv. of piperazine, 6.0
equiv. of NaOH. See supporting information for details. DBU
Diazabicyclo[5.4.0]undec-7-ene.
[
17]
1
= 1,8-
6
688-6728; Angew. Chem. 2015, 127, 6788-6832.
(a) D. R. Snead, T. F. Jamison, Angew. Chem. Int. Ed. 2015, 54, 983-
87; Angew. Chem. 2015, 127, 997-1001. (b) T. Tsubogo, H. Oyamada,
[
5]
9
S. Kobayashi, Nature 2015, 520, 329-332. (c) S. Newton, C. F. Carter,
C. M. Pearson, L. de C. Alves, H. Lange, P. Thansandote, S. V. Ley,
Angew. Chem. Int. Ed. 2014, 53, 4915-4920; Angew. Chem. 2014, 126,
In summary, we have developed a rapid total synthesis of
ciprofloxacin in continuous flow. The total residence time is 9
minutes, compared to over 24 hours in patented synthesis[
9,14]
and
5
015-5020. (d) J. Hartwig, S. Ceylan, L. Kupracz, L. Coutable, A.
Kirschning, Angew. Chem. Int. Ed. 2013, 52, 9813-9817; Angew. Chem.
013, 125, 9995-9999. (e) P. R. D. Murray, D. L. Browne, J. C. Pastre,
polymer supported synthesis[10]. The 60 % overall yield is
comparable to batch[14] and semi-batch syntheses[11]. To the best
of our knowledge, it is the longest linear sequence of reactions
telescoped in continuous flow to date without interrupting the flow
by any workup requirements. Through meticulous selection of
reaction conditions, only one inline workup step is required for the
six-step sequence of reactions, in complement to modular flow
synthesis.[5c,18] The key to continuous operation is (1) inline
acylation of byproduct dimethylamine and (2) keeping the crude
solution of 2 warm before entering Reactor V to avoid solid
formation, due to its low solubility. Isolation of pure ciprofloxacin
involves simple pH adjustment, filtration and washing. This
synthesis enables significant reduction of reaction time and waste
production.
2
C. Butters, D. Guthrie, S. V. Ley, Org. Process Res. Dev. 2013, 17, 1192-
1208. (f) M. Brasholtz, J. M. Macdonald, S. Saubern, J. H. Ryan, A. B.
Holmes, Chem. Eur. J. 2010, 16, 11471-11480. (g) E. Riva, A. Rencurosi,
S. Gagliardi, D. Passarella, M. Martinelli, Chem. Eur. J. 2011, 17, 6221-
6226. (h) B. Ahmed-Omer, A. J. Sanderson, Org. Biomol. Chem. 2011,
9, 3854-3862. (i) A. Adamo, R. L. Beingessner, M. Behnam, J. Chen, T.
F. Jamison, K. F. Jensen, J.-C. M. Monbaliu, A. S. Myerson, E. M.
Revalor, D. R. Snead, T. Stelzer, N. Weeranoppanant, S. Y. Wong, P.
Zhang, Science 2016, 352, 61-67. (j) L. Kupracz, A. Kirschning, Adv.
Synth. Catal. 2013, 355, 3375-3380. (k) J. Hartwig, A. Kirschning, Chem.
Eur. J. 2016, 22, 3044-3052.
[6]
(a) L. Peeva, J. Da Silver Burgal, Z. Heckenast, F. Brazy, F. Cazenave,
A. Livingston, Angew. Chem. Int. Ed. 2016, 55, 13576-13579; Angew.
Chem. 2016, 128, 13774-13777. For an example of employing an
additive to circumvent solvent switch, see (b) J. C. Yang, D. Niu, B. P.
Karsten, F. Lima, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 2531-
2535; Angew. Chem. Int. Ed. 2016, 128, 2577-2581.
Acknowledgements
[
[
7]
8]
For a longer sequence of operations with holding tanks, see R. J. Ingham,
C. Battilocchio, D. E. Fitzpatrick, E. Sliwinski, J. M. Hawkins, S. V. Ley,
Angew. Chem. Int. Ed. 2015, 54, 144-148; Angew. Chem. 2015, 127,
We are grateful to Professor Kai Wang of Tsinghua University, Dr.
Jisong Zhang, Dr. Guohua Liang, Dr. Nopphon Weeranoppanant
for technical support and helpful discussions. We thank Dr.
Marcus O'Mahony and Dr. Naomi Briggs for solubility data of
ciprofloxacin 13 and ciprofloxacin hydrochloride salt 1. We also
thank Dr. Bruce Adams in the Department of Chemistry
Instrumentation Facility (DCIF) at MIT for NMR assistance. This
work was supported by Defense Advanced Research Projects
Agency (DARPA) (N666001-11-C-4005).
146-150.
“19th WHO Model List of Essential Medicines (April 2015)”, can be found
under
[9]
J. J. Li, D. S. Johnson, D. R. Sliskovic, B. D. Roth, in Contemporary Drug
Synthesis, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004, pp. 75-87.
[
10] (a) A. A. MacDonald, S. H. DeWitt, E. M. Hogan, R. Ramage,
Tetrahedron Lett. 1996, 37, 4815-4818. (b) A. M. Hay, S. Hobbs-Dewitt,
A. A. MacDonald, R. Ramage, Tetrahedron Lett. 1998, 39, 8721-8724.
This article is protected by copyright. All rights reserved.