CHIRAL CONVERSION OF SIMPLE CARBOXYLIC ACIDS
from TLC, which emphasizes the utility of this simple analytical
technique in tracing the structural lability of organic compounds.
Even more relevant to our own research is that the oscillatory
condensation documented by these authors involves organosi-
lanols (e.g., R2Si(OH)2 or RR’Si(OH)2). There are several analogies
between the results presented in references[20,21] and those
originating from our own laboratory, and also between the
conclusions of the two research teams:
partially supported by PhD scholarships granted to them in
2009 within the framework of the ‘University as a Partner of
the Economy Based on Science’ (UPGOW) project, subsidized by
the European Social Fund (EFS) of the European Union.
REFERENCES
(i) In selected molecular structures of the relevant organosilanols,
themolecularfragment¼Si(OH)2 appears[20,21].Inourstudy,we
postulate the presence of an intermediate enol structure with
the analogous molecular fragment ¼C(OH)2 (see Eqn (1b)).
(ii) In both studies, condensation of the respective substrates
and the spontaneity of this process is well documented.
(iii) In both cases, condensation takes place in aqueous organic
solution.
(iv) In the condensation of organosilanols, association of the
monomers and oligomers is postulated as the key effect
responsible for the oscillatory nature of the process. In our
model of two linked Templators, the H-bonded homodimers
of the carboxylic acids are suggested as templates for chiral
conversion (further association of enols with these templates
results in a sterically oriented structural change).
[1] M. Sajewicz, R. Pie˛tka, A. Pieniak, T. Kowalska, Acta Chromatogr. 2005,
15, 131–149.
´
[2] M. Sajewicz, M. Gontarska, M. Wrobel, T. Kowalska, J. Liq. Chromatogr.
Relat. Technol. 2007, 30, 2193–2208.
[3] M. Sajewicz, M. Gontarska, D. Kronenbach, Ł. Wojtal, G. Grygierczyk, T.
Kowalska, Acta Chromatogr. 2007, 18, 227–238.
[4] M. Sajewicz, D. Kronenbach, M. Gontarska, T. Kowalska, J. Planar
Chromatogr. Mod. TLC 2008, 21, 43–47.
[5] M. Sajewicz, M. Gontarska, Ł. Wojtal, D. Kronenbach, M. Leda, I. R.
Epstein, T. Kowalska, J. Liq. Chromatogr. Relat. Technol. 2008, 31,
1986–2005.
´
[6] M. Sajewicz, D. Kronenbach, D. Staszek, M. Wrobel, G. Grygierczyk,
T. Kowalska, J. Liq. Chromatogr. Relat. Technol. 2008, 31, 2006–
2018.
[7] M. Sajewicz, E. John, D. Kronenbach, M. Gontarska, T. Kowalska, Acta
Chromatogr. 2008, 20, 367–382.
´
[8] M. Sajewicz, D. Kronenbach, M. Gontarska, M. Wrobel, R. Pie˛tka,
T. Kowalska, J. Planar Chromatogr. Mod. TLC 2009, 22,
241–248.
[9] G. A. Potter, C. Garcia, R. McCague, B. Adger, A. Collet, Angew. Chem.
Int. Ed. 1996, 35, 1666–1668.
[10] P. Belanger, J. G. Atkinson, R. S. Stuart, J. Chem. Soc. D-Chem. Commun.
1969, 1067–1068.
[11] Y. Xie, H. Liu, J. Chen, Int. J. Pharm. 2000, 196, 21–226.
[12] E. Peacock-Lopez, D. B. Radov, C. S. Flesner, Biophys. Chem. 1997, 65,
171–178.
[13] L. L. Tsai, G. R. Hutchinson, E. Peacock-Lopez, J. Chem. Phys. 2000, 113,
2003–2006.
[14] D. G. Blackmond, Proc. Nat. Acad. Sci. USA 2004, 101,
5732–5736.
[15] R. Plasson, H. Bersini, A. Commeyras, Proc. Nat. Acad. Sci. USA 2004,
101, 16733–16738.
[16] M. Sajewicz, M. Gontarska, D. Kronenbach, T. Kowalska, Acta Chro-
matogr. 2009, 21, 151–160.
[17] M. Sajewicz, M. Matlengiewicz, D. Kronenbach, M. Gontarska, T.
Kowalska, Acta Chromatogr. 2009, 21, 259–271.
[18] M. Matlengiewicz, M. Sajewicz, M. Gontarska, D. Kronenbach, T.
Kowalska, Acta Chromatogr. 2010, 22, 81–90.
[19] M. Sajewicz, M. Gontarska, D. Kronenbach, E. Berry, T. Kowalska,
Unpublished results.
[20] P. V. Ivanov, V. I. Maslova, N. G. Bondareva, O. A. Yur’eva, N. V. Kozlova,
E. A. Chernyshev, K. Yu. Odintsov, E. A. Zykunova, Rus. Chem. Bull.
1997, 46, 2138–2141.
(v) Finally, chirality seems to be a key feature in both processes.
In our study, chiral carboxylic acids are the starting material,
while with RR’Si(OH)2 organosilanols, oligomeric conden-
sates have asymmetric Si atoms (and the number of these
atoms equals the number of coupled monomer units).
Further investigation of oscillatory processes involving simple
carboxylic acids occurring spontaneously in vitro in abiotic
aqueous organic systems seems challenging for both purely
scientific reasons and also for practical ones. It seems evident that
insufficient attention has so far been paid to in vitro studies of
structurally simple compounds of high pharmaceutical and/or
biochemical importance (profens, amino acids, and hydroxy acids
are certainly among such compounds). As a result, processes that
run spontaneously in abiotic in vitro systems could erroneously
be attributed to in vivo systems only (as, e.g., in the case of in vivo
chiral conversion of profen drugs[22]) and then claimed to be
inherent in physiological systems and biochemical processes
alone. In that way, misinterpretation of natural processes can
easily occur, with serious and potentially negative consequences.
Acknowledgements
[21] E. A. Chernyshev, P. V. Ivanov, D. N. Golubykh, Rus. Chem. Bull. 2001,
50, 1998–2009.
This work was supported in part by National Science Foundation
grant CHE-0615507 to I.R.E. The work of M.G. and D.K. was
[22] V. Wsol, L. Skalova, B. Szotakova, Curr. Drug Metab. 2004, 5,
517–533.
J. Phys. Org. Chem. 2010, 23 1066–1073
Copyright ß 2010 John Wiley & Sons, Ltd.
View this article online at wileyonlinelibrary.com