10.1002/anie.201908713
Angewandte Chemie International Edition
RESEARCH ARTICLE
with Zn2+ and other residues in the active site, explaining its
relatively lower potency than hydroxamate inhibitors. However,
CycH8a binds close to the active site tunnel of HDAC8. One
possibility to develop more potent HDAC8 inhibitors is to
conjugate an active site-targeting hydroxamate inhibitor and
CycH8a to form a tight-binding, bidentate ligand. This is a
research direction that we are actively exploring right now.
of Texas (grant RP170797), and Welch Foundation (grant A-
1715). We thank Sunshine Z. Leeuwon who proofread the
manuscript.
Keywords: phage display • cyclic peptides • proximity-driven
cyclization • HDAC8 • Ne-acryloyl-lysine
[1] A. K. Sato, M. Viswanathan, R. B. Kent, C. R. Wood, Curr. Opin. Biotechnol. 2006,
17, 638-642; G. L. Verdine, G. J. Hilinski, Method. Enzymol. 2012, 503, 3-33.
[2] N. Sternberg, R. H. Hoess, Proceedings of the National Academy of Sciences of the
United States of America 1995, 92, 1609-1613; S. Li, S. Millward, R. Roberts, J
Am Chem Soc 2002, 124, 9972-9973; N. K. Bashiruddin, H. Suga, Curr Opin Chem
Biol 2015, 24, 131-138; E. T. Boder, K. D. Wittrup, Nat Biotechnol 1997, 15, 553-
557; M. Yonezawa, N. Doi, Y. Kawahashi, T. Higashinakagawa, H. Yanagawa,
Nucleic Acids Res 2003, 31, e118.
[3] T. Passioura, T. Katoh, Y. Goto, H. Suga, Annu. Rev. Biochem. 2014, 83, 727-753.
[4] T. Passioura, H. Suga, Chem Commun (Camb) 2017, 53, 1931-1940.
[5] A. Kawamura, M. Munzel, T. Kojima, C. Yapp, B. Bhushan, Y. Goto, A. Tumber,
T. Katoh, O. N. King, T. Passioura, L. J. Walport, S. B. Hatch, S. Madden, S.
Muller, P. E. Brennan, R. Chowdhury, R. J. Hopkinson, H. Suga, C. J. Schofield,
Nat Commun 2017, 8, 14773; J. Morimoto, Y. Hayashi, H. Suga, Angew Chem Int
Ed Engl 2012, 51, 3423-3427; A. Zorzi, K. Deyle, C. Heinis, Curr Opin Chem Biol
2017, 38, 24-29; N. Bionda, R. Fasan, Methods Mol Biol 2017, 1495, 57-76; A. E.
Owens, I. de Paola, W. A. Hansen, Y. W. Liu, S. D. Khare, R. Fasan, J Am Chem
Soc 2017, 139, 12559-12568.
Conclusion
In summary, we have developed a novel phage display technique
that allows the construction of a genetically encoded, phage-
displayed cyclic peptide library. The cyclization of phage
displayed peptides are achieved by a proximity-driven Michael
addition reaction between a cysteine and an AcrK that flank a
randomized 6-mer peptide sequence. AcrK was encoded by an
amber codon and its incorporation into phages was mediated by
an evolved PylRS-tRNAꢃꢀꢄꢁꢅꢂ pair in E. coli. Applying the developed
library to selection against both TEV protease and HDAC8
afforded cyclic peptide ligands that bind to their protein targets
with single digit µM Kd values and significantly better than their
linear counterparts. As a proof of concept, the current study
involved relatively small size peptides that randomized only 6
residues. It is expected that a library with much bigger randomized
peptides will afford the selection of more potent ligands. Given
that many electrophilic ncAAs have been incorporated into
proteins using the amber suppression mutagenesis approach,[22,
[6] S. Chen, I. R. Rebollo, S. A. Buth, J. Morales-Sanfrutos, J. Touti, P. G. Leiman, C.
Heinis, J. Am. Chem. Soc. 2013, 135, 6562-6569.
[7] D. J. Craik, Science 2006, 311, 1563-1564.
[8] D. J. Craik, D. P. Fairlie, S. Liras, D. Price, Chem. Biol. Drug Des. 2013, 81.
[9] M. Katasara, T. Tselios, S. Deraos, G. Deraos, M. T. Matsoukas, E. Lazoura, J.
Matsoukas, V. Apostolopoulos, Curr. Med. Chem. 2006, 13, 2221-2232.
[10] W. Xiao, Y. Wang, E. Y. Lau, J. Luo, N. Yao, C. Shi, L. Meza, H. Tseng, Y. Maeda,
P. Kumaresan, R. Liu, F. C. Lightstone, Y. Takada, K. S. Lam, Mol Cancer Ther
2010, 9, 2714-2723; C. J. Hipolito, H. Suga, Curr Opin Chem Biol 2012, 16, 196-
203; A. A. Vinogradov, Y. Yin, H. Suga, J Am Chem Soc 2019, 141, 4167-4181.
[11] K. Deyle, X. D. Kong, C. Heinis, Acc Chem Res 2017, 50, 1866-1874.
[12] S. Palei, K. S. Becher, C. Nienberg, J. Jose, H. D. Mootz, Chembiochem 2019, 20,
72-77; M. van Rosmalen, B. M. Janssen, N. M. Hendrikse, A. J. van der Linden, P.
A. Pieters, D. Wanders, T. F. de Greef, M. Merkx, J Biol Chem 2017, 292, 1477-
1489; Y. Huang, M. M. Wiedmann, H. Suga, Chem Rev 2018; A. Tavassoli, Curr
Opin Chem Biol 2017, 38, 30-35.
[13] Z. Qian, P. Upadhyaya, D. Pei, Methods Mol Biol 2015, 1248, 39-53.
[14] R. Derda, M. R. Jafari, Protein Pept Lett 2018, 25, 1051-1075; S. Ng, R. Derda,
Org Biomol Chem 2016, 14, 5539-5545; M. R. Jafari, H. Yu, J. M. Wickware, Y.
S. Lin, R. Derda, Org Biomol Chem 2018, 16, 7588-7594.
[15] M. A. McLafferty, R. B. Kent, R. C. Ladner, W. Markland, Gene 1992, 128, 29-
36; E. Koivunen, B. Wang, E. Ruoslahti, Biotechnology (N Y) 1995, 13, 265-270;
K. T. O'Neil, R. H. Hoess, S. A. Jackson, N. S. Ramachandran, S. A. Mousa, W. F.
DeGrado, Proteins 1992, 14, 509-515.
[16] B. A. Desimmie, M. Humbert, E. Lescrinier, J. Hendrix, S. Vets, R. Gijsbers, R.
M. Ruprecht, U. Dietrich, Z. Debyser, F. Christ, Mol. Ther. 2012, 20, 2064-2075;
D. S. Choi, H. E. Jin, S. Y. Yoo, S. W. Lee, Bioconjugate Chem. 2014, 25, 216-
223; S. C. Meyer, T. Gaj, I. Ghosh, Chem. Biol. Drug Des. 2006, 68, 3-10; B. A.
Katz, Biochemistry 1995, 34, 15421-15429; J. M. Healy, O. Murayama, T. Maeda,
K. Yoshino, K. Sekiguchi, M. Kikuchi, Biochemistry 1995, 34, 3948-3955.
[17] C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat Chem Biol 2009, 5, 502-507;
S. S. Kale, C. Villequey, X. D. Kong, A. Zorzi, K. Deyle, C. Heinis, Nat Chem
2018, 10, 715-723; P. Diderich, D. Bertoldo, P. Dessen, M. M. Khan, I. Pizzitola,
W. Held, J. Huelsken, C. Heinis, ACS Chem Biol 2016, 11, 1422-1427; V.
Baeriswyl, H. Rapley, L. Pollaro, C. Stace, D. Teufel, E. Walker, S. Chen, G.
Winter, J. Tite, C. Heinis, ChemMedChem 2012, 7, 1173-1176; A. Angelini, L.
Cendron, S. Chen, J. Touati, G. Winter, G. Zanotti, C. Heinis, ACS Chem Biol 2012,
7, 817-821.
32]
they can all potentially be used to construct genetically
encoded, phage-displayed cyclic peptide libraries. Since these
ncAAs are structurally diverse, their use will impart different
structural constraints to phage displayed cyclic peptides that will
provide diverse structural diversity beneficial for selection. Unlike
most other binary coding techniques for the construction of cyclic
peptide libraries, the reported method leads to direct, irreversible,
and simultaneous cyclization of displayed peptides right after their
translation. There is no additional chemical intervention
necessary. This feature, shared by the mRNA display-based
RaPID technique, significantly simplifies the construction of cyclic
peptide libraries. As a novel addition to the phage display
technique, we anticipate that this developed technique will find
broad applications in the identification of potent ligands for many
surface receptors and strong inhibitors for enzymes and protein-
protein/DNA/RNA binding interactions.
Experimental Section
Experimental details for the synthesis of all small molecules and peptides,
protein expression, construction of plasmids, phagemids, and the
phagemid library, selection, and characterization of selected peptides are
presented in the supplementary information.
[18] C. Heinis, T. Rutherford, S. Freund, G. Winter, Nat. Chem. Biol. 2009, 7, 502-507;
M. R. Jafari, L. Deng, P. I. Kitov, S. Ng, W. L. Matochko, K. F. Tjhung, A.
Zeberoff, A. Elias, J. S. Klassen, R. Derda, ACS Chem. Biol. 2014, 9, 443-450; S.
Bellotto, S. Chen, I. R. Rebollo, H. A. Wegner, C. Heinis, J. Am. Chem. Soc. 2014,
136, 5880-5883.
[19] I. Kather, C. A. Bippes, F. X. Schmid, J Mol Biol 2005, 354, 666-678.
[20] F. Tian, M. L. Tsao, P. G. Schultz, J Am Chem Soc 2004, 126, 15962-15963; C. C.
Liu, A. V. Mack, E. M. Brustad, J. H. Mills, D. Groff, V. V. Smider, P. G. Schultz,
J Am Chem Soc 2009, 131, 9616-9617; C. C. Liu, H. Choe, M. Farzan, V. V.
Smider, P. G. Schultz, Biochemistry 2009, 48, 8891-8898.
Acknowledgements
[21] J. M. Smith, J. R. Frost, R. Fasan, J Org Chem 2013, 78, 3525-3531; T. Kawakami,
T. Ishizawa, T. Fujino, P. C. Reid, H. Suga, H. Murakami, ACS Chem Biol 2013,
8, 1205-1214; Z. Xiang, H. Ren, Y. S. Hu, I. Coin, J. Wei, H. Cang, L. Wang, Nat
Methods 2013, 10, 885-888.
This work was supported in part by National Institute of Health
(grant R01CA161158), Cancer Prevention and Research Institute
This article is protected by copyright. All rights reserved.