3542
J . Org. Chem. 1997, 62, 3542-3551
Con vin cin g Evid en ce, Not In volvin g Cycliza ble Ra d ica l P r obes,
Th a t th e Rea ction of LiAlH4 w ith Hin d er ed Alk yl Iod id es P r oceed s
P r ed om in a n tly by a Sin gle Electr on Tr a n sfer P a th w a y†,‡
E. C. Ashby* and Catherine O. Welder
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
Received August 27, 1996X
Previous workers have maintained that evidence for the radical nature of the reaction of LiAlH4
with sterically hindered alkyl iodides is due to radical initiation by impurities followed by a halogen
atom radical chain process involving the cyclizable alkyl iodide probe and that the reduction of the
C-I bond actually proceeds by an SN2 pathway. In order to resolve the validity of this explanation,
1-iodo-2,2-dimethylhexane (the saturated counterpart of the cyclizable probe), which is not capable
of this halogen atom radical chain process, was allowed to react with LiAlD4. The reduction product,
2,2-dimethylhexane, contained only 4-76% deuterium depending on the conditions of the reaction.
This result is consistent with the reaction proceeding by a SET process via a radical intermediate
and is inconsistent with an SN2 pathway. We have determined the influence of the nature of the
reaction on the type of reactor surface (Pyrex, Teflon, stainless steel, and quartz) used in the reaction.
We have also studied the influence of AlD3 (a byproduct in the reduction) in the mechanistic
evaluation of this reaction.
In tr od u ction
nature of LAH in the reduction of sterically hindered
alkyl halides.5e The methodology used to establish the
mechanism of the reduction included the following: (1)
direct spectroscopic evidence of radical intermediates by
electron paramagnetic resonance (EPR) spectroscopy, (2)
cyclization of cyclizable alkyl halides that contain the
5-hexenyl group, (3) use of radical traps, and (4) stereo-
chemical studies. The extent of electron transfer was
studied as a function of solvent, substrate, leaving group,
and the hydride reagent.
Upon study of the reaction of unhindered primary
cyclizable probes, 6-halo-1-hexenes (X ) I, Br, Cl), with
LiAlH4, we reported that no cyclized products were
observed. Also, deuterium incorporation in the uncyc-
lized product (1-hexene) was quantitative when LiAlD4
(LAD) was used as the nucleophile. It was concluded that
either an SN2 mechanism best describes the reaction or
the radical species involved collapse to product substan-
tially faster than cyclization to the cyclopentylmethyl
radical (kcyclization ) 2.5 × 105 s-1 at 25 °C).19
Of all the nucleophiles1-18 that have been reported as
one-electron donors, only lithium aluminum hydride
(LAH) has been questioned as to its electron donor ability.
In 1984 we published an article that supports the SET
† The initial studies were communicated earlier. Ashby, E. C.;
Welder, C. O. Tetrahedron Lett. 1995, 36, 7171. Ashby, E. C.; Welder,
C. O.; Doctorovich, F. Tetrahedron Lett. 1993, 34, 7235.
‡ This paper is dedicated to Professor Ernest Eliel who introduced
E.C.A. to LiAlH4 42 years ago as a student at the University of Notre
Dame. Professor Eliel has been a role model for many, a man of
excellence in scientific investigation and teaching, and a man of
character and integrity.
X Abstract published in Advance ACS Abstracts, May 1, 1997.
(1) Kornblum, N.; Michel, R. E.; Kerber, R. C. J . Am. Chem. Soc.
1966, 88, 5660.
(2) Russell, G. A.; Danen, W. C. J . Am. Chem. Soc. 1966, 88, 5663.
(3) Kim, J .; Bunnett, J . F. J . Am. Chem. Soc. 1970, 92, 7463.
(4) (a) Ashby, E. C.; Bowers, J .; DePriest, R. Tetrahedron Lett. 1980,
21, 3541. (b) Ashby, E. C.; Lopp, I. G.; Buhler, J . D. J . Am. Chem. Soc.
1975, 97, 1964. (c) See also: Holm, T.; Crossland, I. Acta Chem. Scand.
1971, 25, 1158.
(5) (a) Ashby, E. C.; Deshpande, A. K. J . Org. Chem. 1994, 59, 3798.
(b) Ashby, E. C.; Pham, T. N.; Amrollah-Madjdabadi, A. J . Org. Chem.
1991, 56, 1596. (c) Ashby, E. C. Acc. Chem. Res. 1988, 21, 414. (d)
Ashby, E. C.; Pham, T. N. Tetrahedron Lett. 1987, 28, 3197. (e) Ashby,
E. C.; DePriest, R. N.; Goel, A. B.; Wenderoth, B.; Pham, T. N. J . Org.
Chem. 1984, 49, 3545. (f) Ashby, E. C.; Wenderoth, B.; Pham, T. N.;
Park, W. S. J . Org. Chem. 1984, 49, 4505. (g) Ashby, E. C.; DePriest,
R. N.; Goel, A. B.; Wenderoth, B.; Pham, T. N. Tetrahedron Lett. 1983,
24, 2825. (h) Ashby, E. C.; Goel, A. B. Tetrahedron Lett. 1981, 22, 1879.
(6) (a) Ashby, E. C.; Goel, A. B. Tetrahedron Lett. 1981, 22, 4783.
(b) Ashby, E. C.; Goel, A. B.; DePriest, R. N. Tetrahedron Lett. 1981,
22, 3729. (c) Ashby, E. C.; DePriest, R. N.; Goel, A. B. Tetrahedron
Lett. 1981, 22, 1763.
(7) (a) Ashby, E. C.; Su, W. Y.; Pham, T. N. Organometallics 1985,
4, 1493. (b) Ashby, E. C.; DePriest, R. N.; Su, W. Y. Organometallics
1984, 3, 1718. (c) See also Smith, G. F.; Kuivila, H. G.; Simon, R.
Sultan, L. J . Am. Chem. Soc. 1981, 103, 833.
(8) (a) Ashby, E. C.; Gurumurthy, R.; Ridlehuber, R. W. J . Org.
Chem. 1993, 58, 5832. See also (b) Santigo, A. N.; Iyer, V. S.; Adcock,
W.; Rossi, R. A. J . Org. Chem. 1988, 53, 3016. (c) Bangerter, B. W.;
Beatly, R. P.; Kouba, J . K.; Wreford, S. S. J . Org. Chem. 1977, 42,
3247.
(9) (a) Ashby, E. C.; Park, W. S.; Goel, A. B.; Su, W. Y. J . Org. Chem.
1985, 50, 5184. (b) See also Russell, G. A.; J anzen, E. G.; Strom, E. T.
J . Am. Chem. Soc. 1964, 86, 1807.
(10) (a) Ashby, E. C.; Argyropoulos, J . N. J . Org. Chem. 1986, 51,
3593. (b) Ashby, E. C.; Goel, A. B.; DePriest, R. N. J . Org. Chem. 1981,
46, 2429.
(12) (a) Ashby, E. C.; Pham, T. N. J . Org. Chem. 1987, 52, 1291.
See also: (b) Russell, G. A.; Lamson, D. W. J . Am. Chem. Soc. 1969,
91, 3967. (c) Fischer, H. J . Phys. Chem. 1969, 73, 3834. (d) Ward, H.
R.; Lawler, R. G.; Cooper, R. A. J . Am. Chem. Soc. 1969, 91, 746. (e)
Lepley, A. R.; Landau, R. L. J . Am. Chem. Soc. 1969, 91, 748.
(13) (a) Ashby, E. C.; Coleman, D. J . Org. Chem. 1987, 52, 4554. (b)
Ashby, E. C.; DePriest, R. N.; Tuncay, A.; Srivastava, S. Tetrahedron
Lett. 1982, 23, 5251.
(14) (a) Ashby, E. C.; Park, B.; Patil, G. S.; Gadru, K.; Gurumurthy,
R. J . Org. Chem. 1993, 58, 424. (b) Ashby, E. C.; Goel, A. B.; DePriest,
R. N. Tetrahedron Lett. 1981, 22, 4355.
(15) Ashby, E. C.; Wenderoth, B.; Pham, T. N.; Park, W. S. J . Org.
Chem. 1984, 49, 4505.
(16) Tolbert, L. M.; Sun, X. J .; Ashby, E. C. J . Am. Chem. Soc. 1995,
117, 2681.
(17) (a) Ashby, E. C.; Argyropoulos, J . N. J . Org. Chem. 1985, 50,
3274. (b) Ashby, E. C.; Argyropoulos, J . N. Tetrahedron Lett. 1984,
25, 7. (c) Ashby, E. C.; Park, W. S. Tetrahedron Lett. 1983, 24, 1667.
(18) For reactions involving 1-halonorbornanes with Me3Sn-, Ph2P-,
N(iPr)2-, PhS-, and the 2-nitropropyl anion, see: Ashby, E. C.; Sun,
X.; Duff, J . L. J . Org. Chem. 1994, 59, 1270. For reactions involving
cyclizable norbornene probes with Na, Mg, sodium naphthalenide, and
Bu2SnH, see: Ashby, E. C.; Pham, T. N. Tetrahedron Lett. 1984, 25,
4333.
(19) Chatgilialoglu, C.; Ingold, K. U.; Scaiano, J . C. J . Am. Chem.
Soc. 1981, 103, 7739. For kinetic parameters for several primary alkyl
radical clocks see Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13,
317.
(11) (a) Ashby, E. C.; Coleman, D.; Gamasa, M. J . Org. Chem. 1987,
52, 4079. (b) Ashby, E. C.; Coleman, D. T., III; Gamasa, M. P.
Tetrahedron Lett. 1983, 24, 851.
S0022-3263(96)01651-9 CCC: $14.00 © 1997 American Chemical Society