pressure at room temperature to a volume of about 5 mL, and
kept overnight at −18 ◦C. Under these conditions, the product
precipitated as a yellow solid that was separated from the mother
liquor by filtration (0.029 g, yield 23%). Elemental analysis: calcd
(%) for C34H40N2O9Zn·3H2O: C, 55.27; H, 6.23; N, 3.79; found: C,
55.46; H, 6.01; N, 3.77. 1H NMR (200 MHz, acetone-d6, 25 ◦C) d
8.77 (bs, 2H); 7.88–6.75 (bm, 10H); 4.34 (bs, 4H); 3.76 (s, 2H);
3.60–3.09 (m, 22H). 13C NMR (50 MHz, CDCl3) d = 164.3,
158.9, 148.5, 136.1, 135.0, 129.7, 127.8, 122.9, 119.0, 116.8, 73.0,
71.3, 70.2 ppm. MS-ESI-TOF for C34H40N2O9Zn Na+ calcd: 707.2;
found: 707.3.
Galli for elemental analyses. We acknowledge MIUR, COFIN
2003, Progetto Dispositivi Supramolecolari for financial contribu-
tions.
References
1 (a) V. Balzani, A. Credi and M. Venturi, Molecular Devices and
Machines—A Journey into the Nano World, Wiley-VCH, Weinheim,
Germany, 2003; (b) K. Kinbara and T. Aida, Chem. Rev., 2005, 105,
1377.
2 (a) D. A. Leigh, M. A. F. Morales, E. M. Perez, J. K. Y. Wong, C. G. Saiz,
A. M. Z. Slawin, A. J. Carmichael, D. M. Haddleton, A. M. Brouwer,
W. J. Buma, G. W. H. Wurpel, S. Leo´n and F. Zerbetto, Angew. Chem.,
Int. Ed., 2005, 44, 3062; (b) J. Andrasson, Y. Terazono, B. Albinsson,
T. A. Moore, A. L. Moore and D. Gust, Angew. Chem., Int. Ed., 2005,
44, 7591.
´
Computational details
Geometries of all the stationary structures were fully optimised
using the force field MM3 as implemented in Macromodel
version 6.0. Additional parameters have been introduced for zinc,
imine nitrogens, phenoxide oxygens, and imine hydrogens and
are reported in the ESI.† Partial atomic charges were computed
using the electrostatic potential (ESP) from the wavefunction
obtained by an AM1 calculation in SPARTAN version 5.0.1. A +2
charge was used for the zinc cation. These parameters gave good
agreement with X-ray structures of known complexes between
zinc-salophen compounds and amines.7
3 V. Balzani, M. Clemente-Leo´n, A. Credi, J. N. Lowe, J. D.
Badjic´, J. F. Stoddart and D. J. Williams, Chem.–Eur. J., 2003, 9,
5348.
4 M. Clemente-Leo´n, C. Pasquini, V. Hebbe-Viton, J. Lacour, A. Dalla
Cort and A. Credi, Eur. J. Org. Chem., 2006, 105.
5 (a) M.-V. Mart´ınez-D´ıaz, N. Spencer and J. F. Stoddart, Angew. Chem.,
Int. Ed. Engl., 1997, 36, 1904; (b) P. R. Ashton, R. Ballardini, V.
Balzani, I. Baxter, A. Credi, M. C. T. Fyfe, M. T. Gandolfi, M. Go´mez-
Lo´pez, M.-V. Mart´ınez-D´ıaz, A. Piersanti, N. Spencer, J. F. Stoddart,
M. Venturi, A. J. P. White and D. J. Williams, J. Am. Chem. Soc., 1998,
120, 11932.
6 (a) I. Poleschak, J.-M. Kern and J.-P. Sauvage, Chem. Commun., 2004,
474; (b) S. Bonnet, J.-P. Collin, M. Koizumi, P. Mobian and J.-P.
Sauvage, Adv. Mater., 2006, 18, 1239.
Conclusions
7 (a) A. L. Singer and D. A. Atwood, Inorg. Chim. Acta, 1998, 277, 157;
(b) G. A. Morris, H. Zhou, C. L. Stern and S. T. Nguyen, Inorg. Chem.,
2001, 40, 3222.
In summary, we have synthesised and fully characterised the
new crown ether macrocycle 1 containing a zinc-salophen unit.
The novel design of this host, based on the 5,5ꢀ junction of the
polyoxyethylene chain, allows for the first time the isolation of a
metallomacrocycle in which the zinc orients one of its two axial
binding sites towards the inside of the cavity of the macrocycle to
face the crown ether chain. This compound behaves as a wheel in
the formation of [2]-pseudorotaxanes with secondary ammonium
ions. We found that the alternate addition of base and acid controls
guest shuttling between the two different binding sites of the
macrocycle. The future development of stoppering methodologies
compatible with the metal salophen moiety will lead to rotaxanes
in which the motion of the axle between the two stations will be a
“pure” intra-wheel translocation.
8 P. A. Vigato and S. Tamburini, Coord. Chem. Rev., 2004, 248, 1717 and
references therein.
9 (a) V. van Axel Castelli, R. Cacciapaglia, G. Chiosis, F. C. J. M. van
Veggel, L. Mandolini and D. N. Reinhoudt, Inorg. Chim. Acta, 1996,
246, 181; (b) Y. Ciringh, S. W. Gordon-Wylie, R. E. Norman, G. R.
Clark, S. T. Weintraub and C. P. Horwitz, Inorg. Chem., 1997, 36, 4968;
(c) M. M. G. Antonisse, B. H. M. Snellink-Ruel, A. C. Ion, J. F. J.
Engbersen and D. N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 1999,
1211; (d) I. Yoon, M. Narita, T. Shimizu and M. Asakawa, J. Am.
Chem. Soc., 2004, 126, 16740.
10 (a) D. T. Rosa and D. Coucouvanis, Inorg. Chem., 1998, 37, 2328;
(b) J. D. Pike, D. T. Rosa and D. Coucouvanis, Eur. J. Inorg. Chem., 2001,
761; (c) M. Martins, C. Freire and A. R. Hillman, Chem. Commun.,
2003, 434; (d) W. Zeng, Z. Mao, J. Li and S. Qin, Synthesis, 2004,
1011.
11 F. Arico`, T. Chang, S. J. Cantrill, S. I. Khan and J. F. Stoddart, Chem.–
Eur. J., 2005, 11, 4655.
12 UV–Vis titration experiments showed that also the association with
dipropylammonium is virtually quantitative (K > 106 M−1).
13 R. A. Bartsch, C. V. Cason and B. P. Czech, J. Org. Chem., 1989, 54,
857.
Acknowledgements
We thank Ms Giorgia Magnatti for her assistance in the synthesis,
Prof. Alberto Credi for valuable discussions, and Dr Paola
14 S. J. Angyal, P. J. Morris, J. R. Tetaz and J. G. Wilson, J. Chem. Soc.,
1950, 2141.
4546 | Org. Biomol. Chem., 2006, 4, 4543–4546
This journal is
The Royal Society of Chemistry 2006
©