TiIII- and Mn/ZrIV-Catalytic ReductiVe Coupling
SCHEME 1. Possible Mechanistic Pathways for the
Homocoupling of Allylic Halides
reaction of allylic halides using Rieke barium9 is very interesting,
giving satisfactory results in the coupling of (E,E)-farnesyl
barium with farnesyl bromide. This process represents the first
direct synthesis of squalene by the coupling of two E,E-farnesyl
units. Most of the above-mentioned methods use stoichometric
quantities of reducing species.
FIGURE 1. Natural dimeric structures.
Titanocene chloride10 has been widely used through SET
processes in the homolytic opening of oxiranes11 and in pinacol
coupling reactions.12 It has also been used in the reduction of
glycosyl bromides13and vic-dibromides14 and in the homocou-
pling of allylic and benzylic halides15 with satisfactory results.
These reactions take place under mild conditions and are
tolerated by a large number of functional groups, such as
alcohols, amines, amides, ketones, acids, and esters.13d By
comparison with their TiIII analogues, ZrIII complexes have been
much less used in organic synthesis. Zirconocene chloride can
be obtained by reduction of Cp2ZrCl2 with sodium-amalgam in
THF or toluene.16b,c,17 Cp2ZrCl has been used to achieve
pinacolinic couplings with aliphatic aldehydes.17 These pina-
colinic couplings have also been successfully achieved using
catalytic amounts of Cp2ZrCl2 in the presence of Mg and
TMSCl.18 Cp2ZrCl also provokes the slow reduction of glycosyl
halides to glycals,10,13d although when this reagent was prepared
in situ, it proved to be more efficient than Cp2TiCl for the
reduction of aliphatic halides.
Bearing in mind the mechanism proposed for the reactions
mediated by these two reagents, we surmised that these species
could well intervene efficiently in the homocoupling of allylic
halides (Scheme 1).
In a previous paper19a we described the first results of a new
catalytic method for the homocoupling of allylic bromides
mediated by TiIII, including the enantioselective preparation of
onocerane derivatives 1 and 2. We describe here the complete
development of the process, the ability of ZrIV to catalyze these
homocouplings in the presence of manganese metal (to our
knowledge no precedence of ZrIV catalyzing these kind of
processes can be found in the literature), and finally, new
applications toward the synthesis of symmetric terpenes, such
as the preparation of advanced key-intermediates in the syn-
theses of (+)-cymbodiacetal (3)20 and dimeric ent-kauranoids
(4), such as xindongnin M (4a),21 and an improved synthetic
way to prepare squalene (5) (Figure 1).
(7) Momose, D.; Iguchi, K.; Sugiyama, T.; Yamada, Y. Tetrahedron Lett.
1983, 24, 921-924.
(8) Clive, D. L. J.; Anderson, P. C.; Moss, N.; Singh, A. J. Org. Chem.
1982, 47, 1641-1647.
(9) (a) Wu, T.-C.; Hiong, H.; Rieke, R. D. J. Org. Chem. 1990, 55, 5045-
5051. (b) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Am. Chem. Soc.
1991, 113, 5893-5895. (c) Corey, E. J.; Noe, M. C.; Shieh, W.-C.
Tetrahedron Lett. 1993, 34, 5995-5998.
(10) Spencer, R. P.; Schwartz, J. Tetrahedron 2000, 56, 2103-2112.
(11) (a) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110,
8561-8562. (b) For a recent review of different cyclization reactions
mediated by Cp2TiCl and its use in the construction of natural products:
Barrero, A. F.; Qu´ılez del Moral, J. F.; Arteaga, J. F.; Sa´nchez, E. M. Eur.
J. Org. Chem. 2006, 7, 1627-1641. (c) Barrero, A. F.; Qu´ılez del Moral,
J. F.; Sa´nchez, E. M.; Arteaga, J. F. Org. Lett. 2006, 8, 669-672.
(12) Gansa¨uer, A.; Moschioni, M.; Bauer, D. Eur. J. Org. Chem. 1998,
1923-1927.
(13) (a) Cavallaro, C. L.; Schwartz, J. J. Org. Chem. 1995, 60, 7055-
7057. (b) Spencer, R. P.; Schwartz, J. Tetrahedron Lett. 1996, 37, 4357-
4360. (c) Spencer, R. P.; Schwartz, J. J. Org. Chem. 1997, 62, 4204-
4205. (d) Spencer, R. P.; Cavallaro, C. L.; Schwartz, J. J. Org. Chem. 1999,
64, 3987-3995. (e) Hansen, T.; Krintel, S. L.; Daasbjerg, K.; Skrydstrup,
T. Tetrahedron Lett. 1999, 40, 6087-6090. (f) Hansen, T.; Daasbjerg, K.;
Skrydstrup, T. Tetrahedron Lett. 2000, 41, 8645-8649.
(14) Davies, S.; Thomas, S. E. Synthesis 1984, 1027-1029.
(15) (a) Yanlong, Q.; Guisheng, L.; Huang, Y. J. Organomet. Chem.
1990, 381, 29-34. (b) Rasmus, J. E.; Larsen, J.; Skrydstrup, T.; Daasbjerg,
K. J. Am. Chem. Soc. 2004, 126, 7853-7864.
Results and Discussion
The development of these synthetic methods began with the
use of geranyl bromide (6) and its geometric stereoisomer neryl
bromide (7).19a The treatment of 6 and 7 in THF with an excess
of Cp2TiCl led rapidly to the formation of the homocoupling
products being the RR′ coupling majority together with lesser
quantities of the Rγ′ adduct (8 and 9) (Figure 2). Digeranyl
and isodigeranyl, regioisomers derived from the coupling of 6
(obtained with 57% and 32%, respectively), are naturally
occurring terpenes found in the commercially available bergamot
oil.22
According to these results, we surmised that the process may
well begin with a fast single-electron transfer (SET) from Cp2-
(19) (a) Barrero, A. F.; Herrador, M. M.; Qu´ılez del Moral, J. F.; Arteaga,
P.; Arteaga, J. F.; Piedra, M.; Sa´nchez, E. M. Org. Lett. 2005, 7, 2301-
2304. (b) Barrero, A. F.; Herrador, M. M.; Qu´ılez del Moral, J. F.; Arteaga,
P.; Arteaga, J. F.; Piedra, M.; Sa´nchez, E. M. Synfacts 2005, 1, 157.
(20) (a) Bottini, A. T.; Dev, V.; Garfagnoli, D. J.; Hope, H.; Joshi, P.;
Lohani, H.; Mathela, C. S.; Nelson, T. E. Phytochemistry 1987, 26, 2301-
2302. (b) D’Souza, A.; Paknikar, S. K.; Dev, V.; Beauchamp, P. S.; Kamat,
S. P. J. Nat. Prod. 2004, 67, 700-702.
(21) Han, Q.-B.; Lu, Y.; Zhang, L.; Zheng, Q.; Sun, H. Tetrahedron
Lett. 2004, 45, 2833-2837.
(22) Soucek, M.; Herout, V.; Sorm, F.; Ceskoslov, A. Collect. Czech.
Chem. Commun. 1961, 26, 2551-2556.
(16) (a) Fochi, G.; Guidi, G.; Floriani, C. J. Chem. Soc., Dalton Trans.
1984, 1253-1256. (b) Cuenca, T.; Royo, P. J. Organomet. Chem. 1985,
293, 61-67. (c) Paul, R. C.; Raj, T.; Parkash, R. Indian J. Chem. 1972,
10, 939-940.
(17) Barden, M. C.; Schwartz, J. J. Org. Chem. 1997, 62, 7520-7521.
(18) Kantam, M. L.; Aziz, K.; Likhar, P. R. Synth. Commun. 2006, 36,
1437-1445.
J. Org. Chem, Vol. 72, No. 8, 2007 2989