Chemistry - A European Journal
10.1002/chem.202005217
COMMUNICATION
3
These MOF nanowries exhibited the quality factors (Q) of ~10
(
4761; c) X. Yang, X. Lin, Y. Zhao, Y. S. Zhao, D. Yan, Angew. Chem.,
Int. Ed. 2017, 56, 7853-7857; d) L. Zou, C. C. Hou, Z. Liu, H. Pang, Q.
Xu, J. Am. Chem. Soc. 2018, 140, 15393-15401; e) C. Huang, J. Dong,
W. Sun, Z. Xue, J. Ma, L. Zheng, C. Liu, X. Li, K. Zhou, X. Qiao, Q. Song,
W. Ma, L. Zhang, Z. Lin, T. Wang, Nat. Commun. 2019, 10, 2779.
a) R. C. Arbulu, Y.-B. Jiang, E. J. Peterson, Y. Qin, Angew. Chem., Int.
Ed. 2018, 57, 5813-5817; b) L. Feng, J.-L. Li, G. S. Day, X.-L. Lv, H.-C.
Zhou, Chem 2019, 5, 1265-1274; c) Y. Lv, Z. Xiong, H. Dong, C. Wei, Y.
Yang, A. Ren, Z. Yao, Y. Li, S. Xiang, Z. Zhang, Y. S. Zhao, Nano Lett.
2020, 20, 2020-2025.
Figure S7), pretty high for MOF-based microcavities.[10a]
In summary, we report the shape–evolution of pure-MOF
microcrystals with optical waveguide and lasing performances
through a bottom-up & top-down synergistic method. The
solvethermol MOF microcrystals (bottom-up) have successfully
evolved from microrods via microtubes to nanowires through a
chelating agent-assisted etching process (top-down). The three
kinds of MOF microstructures with high crystallinity and smooth
surfaces all process great optical waveguide properties.
Furthermore, MOF nanowire with the lowest propagation loss
served as low-threshold FP-type pure-MOF nanolasers. These
results provide a comprehensive investigation on the MOF growth
mechanism, and inspire the rational design of pure-MOF
nanophotonics devices with unique functionalities.
[
8]
9]
[
a) L. Ma, X. Feng, S. Wang, B. Wang, Mater. Chem. Front. 2017, 1, 2474-
2486; b) L. Chen, J. W. Ye, H. P. Wang, M. Pan, S. Y. Yin, Z. W. Wei, L.
Y. Zhang, K. Wu, Y. N. Fan, C. Y. Su, Nat. Commun. 2017, 8, 15985; c)
D.-S. Zhang, Q. Gao, Z. Chang, X.-T. Liu, B. Zhao, Z.-H. Xuan, T.-L. Hu,
Y.-H. Zhang, J. Zhu, X.-H. Bu, Adv. Mater. 2018, 30, 1804715; d) Y. Wei,
H. Dong, C. Wei, W. Zhang, Y. Yan, Y. S. Zhao, Adv. Mater. 2016, 28,
7424–7429; e) X. Y. Dong, Y. Si, J. S. Yang, C. Zhang, Z. Han, P. Luo,
Z. Y. Wang, S. Q. Zang, T. C. W. Mak, Nat. Commun. 2020, 11, 3678.
[
10] a) H. He, H. Li, Y. Cui, G. Qian, Adv. Opt. Mater. 2019, 7, 1900077; b) K.
P. Bera, S. Kamal, A. I. Inamdar, B. Sainbileg, H. I. Lin, Y. M. Liao, R.
Ghosh, T. J. Chang, Y. G. Lee, H. Cheng-Fu, Y. T. Hsu, M. Hayashi, C.
H. Hung, T. T. Luo, K. L. Lu, Y. F. Chen, ACS Appl. Mater. Interfaces
2020, 12, 36485-36495; c) D. Kottilil, M. Gupta, C. Vijayan, P. K.
Bharadwaj, W. Ji, Adv. Funct. Mater. 2020, 30, 2003294.
Acknowledgements
[
11] X.-H. Wu, P. Luo, Z. Wei, Y.-Y. Li, R.-W. Huang, X.-Y. Dong, K. Li, S.-Q.
Zang, B. Z. Tang, Adv. Sci. 2019, 6, 1801304.
This work was supported by the Ministry of Science and
Technology of China (2017YFA0204502), the National Natural
Science Foundation of China (21673039, 21805039) and the
Fujian Provincial Department of Science and Technology
[
12] A. Poddar, J. J. Conesa, K. Liang, S. Dhakal, P. Reineck, G. Bryant, E.
Pereiro, R. Ricco, H. Amenitsch, C. Doonan, X. Mulet, C. M. Doherty, P.
Falcaro, R. Shukla, Small 2019, 15, e1902268.
(2020J05032).
[13] L. Feng, K.-Y. Wang, J. Powell, H.-C. Zhou, Matter 2019, 1, 801-824.
[
14] a) M.-P. Zhuo, Y.-C. Tao, X.-D. Wang, S. Chen, L.-S. Liao, J. Mater.
Chem. C 2018, 6, 9594-9598; b) M. P. Zhuo, Y. X. Zhang, Z. Z. Li, Y. L.
Shi, X. D. Wang, L. S. Liao, Nanoscale 2018, 10, 5140-5147.
15] F. F. Xu, Y. J. Li, Y. Lv, H. Dong, X. Lin, K. Wang, J. Yao, Y. S. Zhao,
CCS Chem. 2020, 2, 369-375.
Keywords: metal−organic framework • shape evolution •
[
nanophotonics • microlasers
[
[
[
1]
2]
3]
a) R. Yan, D. Gargas, P. Yang, Nat. Photonics 2009, 3, 569-576; b) F.
Qian, Y. Li, S. Gradecak, H. G. Park, Y. Dong, Y. Ding, Z. L. Wang, C.
M. Lieber, Nat. Mater. 2008, 7, 701-706; c) J. Clark, G. Lanzani, Nat.
Photonics 2010, 4, 438-446.
a) M. T. Hill, M. C. Gather, Nat. Photonics 2014, 8, 908-918; b) D.
O'Carroll, I. Lieberwirth, G. Redmond, Nat. Nanotechnol. 2007, 2, 180-
184; c) W. Zhang, J. Yao, Y. S. Zhao, Acc. Chem. Res. 2016, 49, 1691-
1700.
a) C. Zhang, C. L. Zou, Y. Yan, R. Hao, F. W. Sun, Z. F. Han, Y. S. Zhao,
J. Yao, J. Am. Chem. Soc. 2011, 133, 7276-7279; b) N. Chandrasekhar,
R. Chandrasekar, Angew. Chem., Int. Ed. 2012, 51, 3556-3561; c) W.
Zhang, Y. Yan, J. Gu, J. Yao, Y. S. Zhao, Angew. Chem., Int. Ed. 2015,
54, 7125-7129; d) H. He, Y. Cui, H. Li, K. Shao, B. Chen, G. Qian, Light:
Sci. Appl. 2020, 9, 138.
[
4]
5]
a) W. Yao, Y. Yan, L. Xue, C. Zhang, G. Li, Q. Zheng, Y. S. Zhao, H.
Jiang, J. Yao, Angew. Chem., Int. Ed. 2013, 52, 8713-8717; b) V. D. Ta,
R. Chen, H. Sun, Adv. Opt. Mater. 2014, 2, 220-225; c) R. Huang, C.
Wang, Y. Wang, H. Zhang, Adv. Mater. 2018, 30, e1800814.
a) H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B.
Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846-850; b) M. Zhao,
K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature
[
2016, 539, 76-80; c) H. He, E. Ma, Y. Cui, J. Yu, Y. Yang, T. Song, C. D.
Wu, X. Chen, B. Chen, G. Qian, Nat. Commun. 2016, 7, 11087; d) Y. Lv,
Z. Xiong, Z. Yao, Y. Yang, S. Xiang, Z. Zhang, Y. S. Zhao, J. Am. Chem.
Soc. 2019, 141, 19959-19963.
[
[
6]
7]
a) J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, G. Qian, Nat.
Commun. 2013, 4, 2719; b) R. Medishetty, V. Nalla, L. Nemec, S. Henke,
D. Mayer, H. Sun, K. Reuter, R. A. Fischer, Adv. Mater. 2017, 29,
1605637; c) M. Liu, H. S. Quah, S. Wen, Y. Li, J. J. Vittal, W. Ji, J. Phys.
Chem. C 2018, 122, 777-781; d) Y. Yao, Z. Gao, Y. Lv, X. Lin, Y. Liu, Y.
Du, F. Hu, Y. S. Zhao, Angew. Chem., Int. Ed. 2019, 58, 13803-13807.
a) W. Cho, H. J. Lee, M. Oh, J. Am. Chem. Soc. 2008, 130, 16943-16946;
b) S. Alizadeh, D. Nematollahi, J. Am. Chem. Soc. 2017, 139, 4753-
4
This article is protected by copyright. All rights reserved.