Edge Article
Chemical Science
Additionally, the axial extension in 2 might also, to some extent,
be responsible for the associated larger splitting, as well as the
exact C2 symmetry held by 3 (Fig. S24 and S25†) might be
responsible for further stabilization of its energy splitting with
respect to 1.
and R. Sessoli, J. Mater. Chem. C, 2013, 1, 2935–2942; (c)
C. R. Ganivet, B. Ballesteros, G. de la Torre,
J. M. Clemente-Juan, E. Coronado and T. Torres, Chem.–
Eur. J., 2013, 19, 1457–1465.
5 (a) J. D. Rinehart, M. Fang, W. J. Evans and J. R. Long, Nat.
Chem., 2011, 3, 538–542; (b) J. D. Rinehart, M. Fang,
W. J. Evans and J. R. Long, J. Am. Chem. Soc., 2011, 133,
Conclusions
14236–14239.
In conclusion, we have structurally isolated three dysprosium
6 (a) R. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar,
D. Collison, W. Wernsdorfer, E. J. L. McInnes,
L. F. Chibotaru and R. E. P. Winpenny, Nat. Chem., 2013, 5,
673–678; (b) R. J. Blagg, C. A. Muryn, E. J. L. McInnes,
F. Tuna and R. E. P. Winpenny, Angew. Chem., Int. Ed.,
2011, 50, 6530–6653.
7 (a) W. Wernsdorfer and R. Sessoli, Science, 1999, 284, 133–
135; (b) G. Cucinotta, M. Perfetti, J. Luzon, M. Etienne,
P.-E. Car, A. Caneschi, G. Calvez, K. Bernot and R. Sessoli,
Angew. Chem., Int. Ed., 2012, 51, 1606–1610; (c)
M. Murugesu, Nat. Chem., 2012, 4, 347–348.
8 Y.-N. Guo, L. Ungur, G. E. Granroth, A. K. Powell, C. Wu,
S. E. Nagler, J. Tang, L. F. Chibotaru and D. Cui, Sci. Rep.,
2014, 4, 5471.
9 P. Zhang, L. Zhang, C. Wang, S. Xue, S.-Y. Lin and J. Tang,
J. Am. Chem. Soc., 2014, 136, 4484–4487.
SMMs with similar square-antiprismatic environments (D4d
)
but discriminative counter-anions. The distortions in the D4d
symmetry environment led to large energy gaps between the
ground and rst excited states, and strong axial anisotropies for
complexes 1–3. Upon changing the counter-anion, signicant
differences in the structure and thus magnetic behavior were
observed: for instance, when going from 3 to 1, the p–p stacking
interactions between the Lz ligands lead to axial constriction in
the environment geometry, from which fast quantum tunneling
arises because the symmetry is lowered; proper rotation of one
coordinating plane, as well as relative axial extension in
complex 2 with respect to complex 3, allows magnetic relaxation
to pass through higher excited states, due to an increase in
molecular symmetry. Ab initio calculations substantiate the
diversity of the magnetic behaviors in complexes 1–3 and
suggest that the ground states are almost isolated, magnetically 10 (a) M. A. AlDamen, J. M. Clemente-Juan, E. Coronado,
speaking. Notably, the efficient magnetic relaxation pathways of
complex 2 probably go through the fourth and h Kramer
doublet states. This conforms a high anisotropy barrier of 696 K
C. Mart ´ı -Gastaldo and A. Gaita-Ari n˜ o, J. Am. Chem. Soc.,
2008, 130, 8874–8875; (b) S.-D. Jiang, B.-W. Wang, G. Su,
Z.-M. Wang and S. Gao, Angew. Chem., Int. Ed., 2010, 49,
7448–7451; (c) D.-P. Li, T.-W. Wang, C.-H. Li, D.-S. Liu,
Y.-Z. Li and X.-Z. You, Chem. Commun., 2010, 46, 2929–
2931; (d) Y. Bi, Y.-N. Guo, L. Zhao, Y. Guo, S.-Y. Lin,
S.-D. Jiang, J. Tang, B.-W. Wang and S. Gao, Chem.–Eur.
J., 2011, 17, 12476–12481; (e) G. J. Chen, C. Y. Gao,
J. L. Tian, J. Tang, W. Gu, X. Liu, S. P. Yan, D. Z. Liao and
P. Cheng, Dalton Trans., 2011, 40, 5579–5583; (f)
G.-J. Chen, Y.-N. Guo, J.-L. Tian, J. Tang, W. Gu, X. Liu,
S.-P. Yan, P. Cheng and D.-Z. Liao, Chem.–Eur. J., 2012,
18, 2484–2487; (g) T. T. da Cunha, J. Jung, M.-E. Boulon,
G. Campo, F. Pointillart, C. L. M. Pereira, B. Le Guennic,
O. Cador, K. Bernot, F. Pineider, S. Golhen and
L. Ouahab, J. Am. Chem. Soc., 2013, 135, 16332–16335; (h)
Y.-N. Guo, G.-F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo,
J. Tang, H.-J. Zhang, L. F. Chibotaru and A. K. Powell, J.
Am. Chem. Soc., 2011, 133, 11948–11951; (i) J.-L. Liu,
Y.-C. Chen, Y.-Z. Zheng, W.-Q. Lin, L. Ungur,
W. Wernsdorfer, L. F. Chibotaru and M.-L. Tong, Chem.
Sci., 2013, 4, 3310–3316; (j) J.-L. Liu, J.-Y. Wu, Y.-C. Chen,
V. Mereacre, A. K. Powell, L. Ungur, L. F. Chibotaru,
X.-M. Chen and M.-L. Tong, Angew. Chem., Int. Ed., 2014,
53, 12966–12970.
ꢀ
1
(484 cm ) and magnetic blocking up to 7 K. This work offers
a new way to modulate the geometries of lanthanides in order to
facilitate magnetic relaxation climbing up to higher energy
levels.
Acknowledgements
We thank the National Natural Science Foundation of China
(
Grants 21525103, 21371166, 21521092 and 21331003) for
nancial support. B. L. G. and J. J. thank the French GENCI-
CINES center for high-performance computing resources
project x2015080649).
(
Notes and references
1
R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak, Nature,
993, 365, 141–143.
(a) M. N. Leuenberger and D. Loss, Nature, 2001, 410, 789–
1
2
7
2
93; (b) A. Dei and D. Gatteschi, Angew. Chem., Int. Ed.,
011, 50, 11852–11858; (c) D. Gatteschi and R. Sessoli,
Angew. Chem., Int. Ed., 2003, 42, 268–297; (d) D. Gatteschi,
Adv. Mater., 1994, 6, 635–645.
3
4
(a) L. Ungur and L. F. Chibotaru, Phys. Chem. Chem. Phys., 11 (a) J. M. Clemente-Juan, E. Coronado and A. Gaita-Arino,
2
3
011, 13, 20086–20090; (b) D. Gatteschi, Nat. Chem., 2011,
, 830–830; (c) N. F. Chilton, C. Goodwin, D. P. Mills and
Chem. Soc. Rev., 2012, 41, 7464–7478; (b) L. Sorace,
C. Benelli and D. Gatteschi, Chem. Soc. Rev., 2011, 40,
3092–3104.
R. E. P. Winpenny, Chem. Commun., 2015, 51, 101–103.
(a) N. Ishikawa, M. Sugita, T. Ishikawa, S.-y. Koshihara and 12 F. H. Case and E. Ko, J. Am. Chem. Soc., 1959, 81, 905–906.
Y. Kaizu, J. Am. Chem. Soc., 2003, 125, 8694–8695; (b) 13 G. M. Sheldrick, SHELXS-97 Program for Crystal Structure
L. Malavolti, M. Mannini, P.-E. Car, G. Campo, F. Pineider
Solution, University of G ¨o ttingen, Germany, 1997.
This journal is © The Royal Society of Chemistry 2016
Chem. Sci.