Manuel Lejeune et al.
FULL PAPERS
´
5 min, 158C/min ramp, 2508C/5 min. Retention times for the
dimers are as follows: 4-methyl-1pentene (4M1P), 1.65 min;
4-methyl-2-pentene (4M2P), 1.72 min; 2-methyl-1pentene
(2M1P), 1.81 min; 1-hexene, 1.82 min; 2-methyl-2-pentene
(2M2P), 1.91 min; hexene isomers, 1.95 min; 2,3-dimethyl-2-
butene (TMEN), 2.04 min. Peak identification was made
with GC-MS.
[7] D. Semeril, M. Lejeune, C. Jeunesse, D. Matt, J. Mol.
Catal. A: Chemical 2005, 239, 257–262.
[8] G. G. Eberhardt, U. S. Patent 3,482,001, 1969; Chem.
Abstr. 1970, 72, 42720.
[9] T. Hata, K. Takahashi, A. Miyake, Japanese Patent
47022807, 1972; Chem. Abstr. 1972, 77, 87812.
[10] H. E. Dunn, U. S. Patent 3,636,128, 1972; Chem. Abstr.
1972, 76, 71985.
[11] K. J. Cavell, A. F. Masters, Aust. J. Chem. 1986, 39, 1129–
1134.
Crystallography
[12] J. A. J. Jarvis, R. H. B. Mais, P. G. Owston, J. Chem. Soc.
A 1968, 1473–1486.
Single crystals of 3 were grown as green plates by slow diffusion
of heptane into a chloroform solution of the complex at room
temperature. Data were collected at 120 K on a Nonius Kappa
CCD diffractometer using an MoKa X-ray source (l¼
[13] E. Dahan, S. E. Biali, J. Org. Chem. 1991, 56, 7269–7274.
[14] V. Bçhmer, Angew. Chem. Int. Ed. 1995, 34, 713–745.
[15] NMR measurements carried out on 3/MAO/hexene mix-
tures (in C6D6) revealed only the presence of diamagnet-
ic species. Hence, it appears likely that during catalysis
the nickel atom adopts a planar geometry. We assume
that in the catalytic intermediates obtained from 4, the
nickel centre has also this coordination geometry. Mo-
lecular models show that in the latter, the two Br atoms
of the calix platform do not sterically interact with the
metal plane.
[16] S. A. Svejda, M. Brookhart, Organometallics 1999, 18,
65–74.
[17] M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeu-
wen, D. Vogt, W. Keim, Chem. Commun. 1995, 2177–
2178.
0.71073 ) and
a graphite monochromator. Formula:
C64H66Br2NiO4P2; Mr ¼1179.64 g·molÀ1; monoclinic, space
group P21/c, a¼19.2276(4), b¼15.5620(4), c¼19.7108(5) ,
b¼104.362(1)8, V¼5713.5(2) 3; Z¼4; Dx ¼1.371 Mg·mÀ3
,
m¼18.41 cmÀ1
;
F(000)¼2440. Crystal dimensions 0.40Â
0.35Â0.22 mm. 10045 independent reflections, 8211 with I>
2s(I). Goodness of fit on F2 ¼1.198; R(I>2s(I))¼0.095;
wR2¼0.28, 659 parameters; maximum/minimum residual den-
sity 1.755/À0.991 e 3. The crystal structure was solved with
SIR97[25] and refined with SHELXL97[26] by full matrix least-
squares using anisotropic thermal displacement parameters
for all non-hydrogen atoms. After anisotropic refinement,
many hydrogen atoms could be localized with a Fourier differ-
ence. CCDC-264585 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
from Cambridge Crystallographic Data Centre, 12, Union
Road, Cambridge CB21EZ, UK; Fax: (þ44)-1223-336-033;
or deposit@ccdc.cam.ac.uk].
[18] M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeu-
wen, Eur. J. Inorg. Chem. 1998, 155–157.
[19] P. C. J. Kamer, P. W. N. M. van Leeuwen, J. N. H. Reek,
Acc. Chem. Res. 2001, 34, 895–904.
[20] J. N. L. Dennett, A. L. Gillon, K. Heslop, D. J. Hyett, J. S.
Fleming, C. E. Lloyd-Jones, A. G. Orpen, P. G. Pringle,
D. F. Wass, J. N. Scutt, R. H. Weatherhead, Organometal-
lics 2004, 23, 6077–6079.
Acknowledgements
´
´
[21] I. Albers, E. Alvarez, J. Campora, C. M. Maya, P. Palma,
´
We are grateful to the Universite Louis Pasteur for support.
´
L. J. Sanchez, E. Passaglia, J. Organometal. Chem. 2004,
`
M. L. thanks the Ministere de lꢀEducation Nationale for a re-
689, 833–839.
search grant.
[22] M. Lejeune, C. Jeunesse, D. Matt, N. Kyritsakas, R. Wel-
ter, J.-P. Kintzinger, J. Chem. Soc. Dalton Trans. 2002,
1642–1650.
[23] C. A. McAuliffe, D. W. Meek, Inorg. Chem. 1969, 8, 904–
907.
References and Notes
[1] S. Muthukumaru Pillai, M. Ravindranathan, S. Sivaram,
[24] P. Stone, Z. Dori, Inorg. Chim. Acta 1971, 5, 434–438.
[25] A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C.
Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Poli-
dori, R. Spagna, SIR97, an integrated package of comput-
er programs for the solution and refinement of crystal
structures using single crystal data.
[26] G. M. Sheldrick, SHELXL-97, Program for Crystal
Structure Refinement; University of Gçttingen, Gçttin-
gen, Germany, 1997.
Chem. Rev. 1986, 86, 353–399.
[2] D. Commereuc, Y. Chauvin, G. Leger, J. Gaillard, Rev.
´
Inst. Fr. Pet. 1982, 37, 639–649.
[3] M. E. Bluhm, C. Folli, D. Pufky, M. Krçger, O. Walter,
M. Dçring, Organometallics 2005, 24, 4139–4152.
[4] M. Itagaki, G. Suzukamo, K. Nomura, Bull. Chem. Soc.
Jpn. 1998, 71, 79–82.
[5] B. Bogdanovic, B. Spliethoff, G. Wilke, Angew. Chem.
Int. Ed. 1980, 19, 622–623.
´
[6] M. Lejeune, D. Semeril, C. Jeunesse, D. Matt, F. Perruch,
P. J. Lutz, L. Ricard, Chem. Eur. J. 2004, 10, 5354–3360.
886
asc.wiley-vch.de
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2006, 348, 881 – 886