5
608 Biochemistry, Vol. 49, No. 26, 2010
Dowling et al.
2
5. Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman,
R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen,
I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig,
A., Kyes, S., Chan, M.-S., Nene, V., Shallom, S. J., Suh, B., Peterson,
J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather,
M. W., Vaidya, A. B., Martin, D. M. A., Fairlamb, A. H., Fraunholz,
M. J., Roos, D. S., Ralph, S. A., McFadden, G. I., Cummings, L. M.,
Subramanian, G. M., Mungall, C., Venter, J. C., Carucci, D. J.,
Hoffman, S. L., Newbold, C., Davis, R. W., Fraser, C. M., and
Barrell, B. (2002) Genome sequence of the human malaria parasite
Plasmodium falciparum. Nature 419, 498–511.
E., Ilies, M., Gerstenblith, G., Nyhan, D., Shoukas, A., Christianson,
D. W., Alp, N. J., Champion, H. C., Huso, D., and Berkowitz, D. E.
(2008) Endothelial arginase II: A novel target for the treatment of
atherosclerosis. Circ. Res. 102, 923–932.
44. Birkholtz, L.-M., Wrenger, C., Joubert, F., Wells, G. A., Walter,
R. D., and Louw, A. I. (2004) Parasite-specific inserts in the bifunc-
tional S-adenosylmethionine decarboxylase/ornithine decarboxylase
of Plasmodium falciparum modulate catalytic activities and domain
interactions. Biochem. J. 377, 439–448.
45. Jean, L., Withers-Martinez, C., Hackett, F., and Blackman, M. J.
(2005) Unique insertions within Plasmodium falciparum subtilisin-like
protease-1 are crucial for enzyme maturation and activity. Mol.
Biochem. Parasitol. 144, 187–197.
46. Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanich-
tanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D., and
Yuthavong, Y. (2003) Insights into antifolate resistance from malarial
DHFR-TS structures. Nat. Struct. Biol. 10, 357–365.
2
2
6. Pizzi, E., and Frontali, C. (2001) Low-complexity regions in Plasmo-
dium falciparum proteins. Genome Res. 11, 218–229.
7. Lavulo, L. T., Sossong, T. M., Jr., Brigham-Burke, M. R., Doyle,
M. L., Cox, J. D., Christianson, D. W., and Ash, D. E. (2001) Subunit-
subunit interactions in trimeric arginase. Generation of active monomers
by mutation of a single amino acid. J. Biol. Chem. 276, 14242–14248.
2
8. Alarc oꢀ n, R., Orellana, M. S., Neira, B., Uribe, E., Garcı
´
a, J. R., and
47. Bewley, M. C., Jeffrey, P. D., Patchett, M. L., Kanyo, Z. F., and
Baker, E. N. (1999) Crystal structures of Bacillus caldovelox arginase
in complex with substrate and inhibitors reveal new insights into
activation, inhibition and catalysis in the arginase superfamily.
Structure 7, 435–448.
48. Kumarevel, T. S., Karthe, P., Kuramitsu, S., and Yokoyama, S.
(2009) Crystal structure of the arginase from Thermus thermophilus.
PDB entry 2EF4.
49. Cox, J. D., Kim, N. N., Traish, A. M., and Christianson, D. W. (1999)
Arginase-boronic acid complex highlights a physiological role in
erectile function. Nat. Struct. Biol. 6, 1043–1047.
50. Christianson, D. W. (2005) Arginase: Structure, mechanism, and
physiological role in male and female sexual arousal. Acc. Chem.
Res. 38, 191–201.
51. Ash, D. E., Scolnick, L. R., Kanyo, Z. F., Vockley, J. G., Cederbaum,
S. D., and Christianson, D. W. (1998) Molecular basis of hyperargi-
ninemia: Structure-function consequences of mutations in human
liver arginase. Mol. Genet. Metab. 64, 243–249.
52. Sabio, G., Mora, A., Rangel, M. A., Quesada, A., Marcos, C. F.,
Alonso, J. C., Soler, G., and Centeno, F. (2001) Glu-256 is a main
structural determinant for oligomerisation of human arginase I.
FEBS Lett. 501, 161–165.
53. Kanyo, Z. F., Scolnick, L. R., Ash, D. E., and Christianson, D. W.
(1996) Structure of a unique binuclear manganese cluster in arginase.
Nature 383, 554–557.
54. van Brummelen, A. C., Olszewski, K. L., Wilinski, D., Llin ꢀa s, M.,
Louw, A. I., and Birkholtz, L. M. (2009) Co-inhibition of Plasmodium
falciparum S-adenosylmethionine decarboxylase/ornithine decarbo-
xylase reveals perturbation-specific compensatory mechanisms by
transcriptome, proteome, and metabolome analyses. J. Biol. Chem.
284, 4635–4646.
Carvajal, N. (2006) Mutational analysis of substrate recognition by
human arginase type I: Agmatinase activity of the N130D variant.
FEBS J. 273, 5625–5631.
29. Baggio, R., Elbaum, D., Kanyo, Z. F., Carroll, P. J., Cavalli, R. C.,
2þ
Ash, D. E., and Christianson, D. W. (1997) Inhibition of Mn -
arginase by borate leads to the design of a transition state analogue
2
inhibitor, 2(S)-amino-6-boronohexanoic acid. J. Am. Chem. Soc. 119,
8
107–8108.
0. Di Costanzo, L., Sabio, G., Mora, A., Rodriguez, P. C., Ochoa, A. C.,
Centeno, F., and Christianson, D. W. (2005) Crystal structure of
3
3
˚
human arginase I at 1.29-A resolution and exploration of inhibition in
the immune response. Proc. Natl. Acad. Sci. U.S.A. 102, 13058–13063.
1. Cama, E., Colleluori, D. M., Emig, F. A., Shin, H., Kim, S. W., Kim,
N. N., Traish, A. M., Ash, D. E., and Christianson, D. W. (2003)
Human arginase II: Crystal structure and physiological role in male
and female sexual arousal. Biochemistry 42, 8445–8451.
2. Archibald, R. M. (1945) Colorimetric determination of urea. J. Biol.
Chem. 157, 507–518.
3. Cheng, Y.-C., and Prusoff, W. H. (1973) Relationship between the
3
3
I
inhibition constant (K ) and the concentration of inhibitor which
causes 50% inhibition (I50) of an enzymatic reaction. Biochem.
Pharmacol. 22, 3099–3108.
3
4. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction
data collected in oscillation mode. Methods Enzymol. 276, 307–326.
5. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D.,
Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic soft-
ware. J. Appl. Crystallogr. 40, 658–674.
3
3
6. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R.,
McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter,
N. K., and Terwilliger, T. C. (2002) PHENIX: Building new software
for automated crystallographic structure determination. Acta Crys-
tallogr. D58, 1948–1954.
55. Ochoa, A. C., Zea, A. H., Hernandez, C., and Rodriguez, P. C. (2007)
Arginase, prostaglandins, and myeloid-derived suppressor cells in
renal cell carcinoma. Clin. Cancer Res. 13, 721s–726s.
56. Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti,
S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O’Neill,
A., Mier, J., and Ochoa, A. C. (2005) Arginase-producing myeloid
suppressor cells in renal cell carcinoma patients: A mechanism of tumor
evasion. Cancer Res. 65, 3044–3048.
3
3
3
7. Emsley, P., and Cowtan, K. (2004) Coot: Model-building tools for
molecular graphics. Acta Crystallogr. D60, 2126–2132.
8. Krissinel, E., and Henrick, K. (2007) Inference of macromolecular
assemblies from crystalline state. J. Mol. Biol. 372, 774–797.
9. Bru n~ a-Romero, O., Hafalla, J. C. R., Gonz ꢀa lez-Aseguinolaza, G.,
Sano, G., Tsuji, M., and Zavala, F. (2001) Detection of malaria liver-
stages in mice infected through the bite of a single Anopheles mosquito
using a highly sensitive real-time PCR. Int. J. Parasitol. 31, 1499–1502.
0. Cavalli, R. C., Burke, C. J., Soprano, D. R., Kawamoto, S., and Ash,
D. E. (1994) Mutagenesis of rat liver arginase expressed in Escherichia
coli: Role of conserved histidines. Biochemistry 33, 10652–10657.
57. Singh, R., Pervin, S., Karimi, A., Cederbaum, S., and Chaudhuri,
G. (2000) Arginase activity in human breast cancer cell lines:
4
4
N(ω)-Hydroxy-L-arginine selectively inhibits cell proliferation and
induces apoptosis in MDA-MB-468 cells. Cancer Res. 60, 3305–
3312.
1. Garcı
(
´
a, D., Uribe, E., Lobos, M., Orellana, M. S., and Carvajal, N.
2009) Studies on the functional significance of a C-terminal S-shaped
58. Gobert, A. P., McGee, D. J., Akhtar, M., Mendz, G. L., Newton,
J. C., Cheng, Y., Mobley, H. L. T., and Wilson, K. T. (2001)
Helicobacter pylori arginase inhibits nitric oxide production by eu-
karyotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci.
U.S.A. 98, 13844–13849.
59. Cama, E., Pethe, S., Boucher, J. L., Han, S., Emig, F. A., Ash, D. E.,
Viola, R. E., Mansuy, D., and Christianson, D. W. (2004) Inhibitor
coordination interactions in the binuclear manganese cluster of
arginase. Biochemistry 43, 8987–8999.
motif in human arginase type I: Essentiality for cooperative effects.
Arch. Biochem. Biophys. 481, 16–20.
4
4
2. Colleluori, D. M., Morris, S. M., Jr., and Ash, D. E. (2001) Expres-
sion, purification, and characterization of human type II arginase.
Arch. Biochem. Biophys. 389, 135–143.
3. Ryoo, S., Gupta, G., Benjo, A., Lim, H. K., Camara, A., Sikka, G.,
Lim, H. K., Sohi, J., Santhanam, L., Soucy, K., Tuday, E., Baraban,