1252 J. Phys. Chem. A, Vol. 105, No. 8, 2001
Pasinszki and Westwood
(6) Diana, G. D.; Cutcliffe, D.; Volkots, D. L.; Mallamo, J. P.; Bailey,
T. R.; Vescio, N.; Oglesby, R. C.; Nitz, T. J.; Wetzel, J.; Giranda, V.; Pevear,
D. C.; Dutko, F. J. J. Med. Chem. 1993, 36, 3240. Amici, M. De; Micheli,
C. De; Misani, V. Tetrahedron 1990, 46, 1975.
(7) Pasinszki, T.; Westwood, N. P. C. J. Phys. Chem. 1995, 99, 6401.
(8) Gillies, C. W.; Gillies, J. Z.; Lichau, H.; Winnewisser, B. P.;
Winnewisser, M. Chem. Phys. Lett. 1998, 285, 391.
(9) Pasinszki, T.; Westwood, N. P. C. J. Phys. Chem. A 1998, 102,
4939.
(10) Lichau, H.; Winnewisser, B. P.; Winnewisser, M.; Gillies, C. W.;
Gillies, J. Z. To be published.
isolated at low temperatures and revaporized below 0 °C without
significant loss to the dimer. As Figure 7 illustrates, the
dimerization mechanisms of 1 and ClCNO9 are very similar,
following a two-step process, but with significantly different
barriers. That for ClCNO is a mere 4.3 kcal/mol, indicative of
a process that can go to completion very easily, thereby
explaining the spontaneous and rapid dimerization of ClCNO
observed experimentally at room temperature.
(11) Pasinszki, T.; Westwood, N. P. C. J. Phys. Chem. 1996, 100, 16856.
(12) Pasinszki, T.; Westwood, N. P. C. J. Am. Chem. Soc. 1995, 117,
8425.
(13) Guo, B.; Pasinszki, T.; Westwood, N. P. C.; Bernath, P. F. J. Chem.
Phys. 1995, 103, 3335.
(14) Guo, B.; Pasinszki, T.; Westwood, N. P. C.; Zhang, K.-Q.; Bernath,
P. F. J. Chem. Phys. 1996, 105, 4457.
(15) Brupbacher, Th.; Bohn, R. K.; Ja¨ger, W.; Gerry, M. C. L.; Pasinszki,
T.; Westwood, N. P. C. J. Mol. Spectrosc. 1997, 181, 316.
(16) Koput, J. J. Phys. Chem. A 1999, 103, 2170.
Conclusion
In this work we have sought to generate CH3CNO, 1, cleanly
in the gas phase for spectroscopic observation, to compare
structural and spectroscopic data with conventional ab initio
methods and DFT methods, and to describe, computationally,
potential loss processes via either isomerization or dimerization
pathways. The method chosen, thermolytic cycloreversion of
the ring dimer dimethylfuroxan, 2, turns out to be an excellent
approach permitting the acquisition of clean gas-phase photo-
ionization mass, mid-infrared, and HeI photoelectron spectra.
The gas-phase IR spectrum, assigned on the basis of band shapes
and a comparison with computational results, provides a clear
picture of a symmetric-top molecule and should provide a useful
starting point for high-resolution investigation.58 The HeI
photoelectron spectrum was assigned on the basis of C3V
symmetry and is in excellent agreement with both HAM/3 and
OVGF calculations for the ionization energies. The structure
investigated with medium- to large-scale ab initio calculations
demonstrates the continued difficulty for conventional ab initio
calculations due to strong correlation effects. Nonetheless, DFT
can be a cost-effective approach for such molecules, and this
approach was used to investigate differences in the potential
surfaces of 1, CH3NCO, and CH3OCN reflective of their
structural differences, and isomerization processes to chain and
ring species. The conclusion is that 1 has a linear or quasi-
linear heavy atom chain and is stable to unimolecular decom-
position, and as demonstrated by DFT calculations, dimerization
to the stable furoxan is the dominant loss process involving a
two-step mechanism. Nonetheless, loss through dimerization is
shown to be not as significant as in the case of the halosubsti-
tuted nitrile oxide ClCNO and, by extension, BrCNO.
(17) Koput, J. J. Phys. Chem. A 1999, 103, 6017.
(18) Isner, W. G.; Humphrey, G. L. J. Am. Chem. Soc. 1967, 89, 6442.
(19) Zinner, G.; Gu¨nther, H. Angew. Chem., Int. Ed. Engl. 1964, 3, 383.
(20) Mitchell, W. R.; Paton, R. M. Tetrahedron Lett. 1979, 26, 2443.
(21) Mielke, Z.; Hawkins, M.; Andrews, L. J. Phys. Chem. 1989, 93,
558.
(22) Bodenseh, H. K.; Morgenstern, K. Z. Naturforsch. 1970, 25a, 150.
(23) Blackburn, P. B.; Brown, R. D.; Burden, F. R.; Crofts, J. G.; Gillard,
I. R. Chem. Phys. Lett. 1970, 7, 102.
(24) Winnewisser, M.; Pearson, E. F.; Galica, J.; Winnewisser, B. P. J.
Mol. Spectrosc. 1982, 91, 255. Galica, J.; Winnewisser, M.; Winnewisser,
B. P. J. Mol. Struct. 1984, 114, 243.
(25) Poppinger, D.; Radom L. J. Am. Chem. Soc. 1978, 100, 3674.
(26) Wiberg, K. B.; Breneman, C. M. J. Am. Chem. Soc. 1990, 112,
8765.
(27) Koput, J.; Winnewisser, B. P.; Winnewisser, M. Chem. Phys. Lett.
1996, 255, 357.
(28) Scholl, Chem. Ber. 1890, 23, 3499.
(29) Ungnade, H. E.; Kissinger, L. W. Tetrahedron 1963, 19 (Suppl.
1), 143.
(30) Frost, D. C.; S. T. Lee, S. T.; McDowell, C. A.; Westwood, N. P.
C. J. Electron Spectrosc. Relat. Phenom. 1977, 12, 95.
(31) Pasinszki, T.; Westwood, N. P. C. J. Mol. Struct. 1997, 408/409,
161.
(32) Åsbrink, L.; Fridh, C.; Lindholm, E. Chem. Phys. Lett. 1977, 52,
69. The HAM/3 program (PC version) is available from the QCPE, Indiana
University, Bloomington, IN (Chong, D. P. QCMP005, 1985).
(33) Niessen, W. von; Schirmer, J.; Cederbaum, L. S. Comput. Phys.
Rep. 1984, 1, 57.
(34) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.;
Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.
A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley,
J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.;
Stewart, J. J. P.; Pople, J. A. Gaussian 92, Revision E.1, Gaussian, Inc.,
Pittsburgh, PA, 1992.
(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson,
G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C. and Pople, J. A.: Gaussian 94, Revision D.4,
Gaussian, Inc., Pittsburgh, PA, 1995.
(36) Flammang, R.; Barbieux-Flammang, M.; Gerbaux, P.; Wentrup,
C.; Wong, M. W. Bull. Soc. Chim. Belg. 1997, 106, 545.
(37) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Int. J. Quantum
Chem., Quantum Chem. Symp. 1988, 22, 377. Kraka, E.; Gauss, J.; Cremer,
D. J. Mol. Struct.: THEOCHEM 1991, 80, 95.
(38) He, Z.; Cremer, D. Int. J. Quantum Chem., Quantum Chem. Symp.
1991, 25, 43. He, Z.; Cremer, D. Theor. Chim. Acta 1993, 85, 305.
(39) Calculated equilibrium geometry for CH3NCO using B3-LYP/cc-
pVTZ and experimental MW (r0) results (Koput, J. J. Mol. Spectrosc. 1986,
115, 131) in parentheses: CsN ) 1.439 (1.4507) Å, NdC ) 1.197 (1.214)
Å, CdO ) 1.173 (1.166) Å, CsNsC ) 139.9° (135.6°), NsCsO )
173.7° (170.3°).
(40) Calculated equilibrium geometry for CH3OCN using B3-LYP/cc-
pVTZ and experimental MW (rs) results (ref 3) in parentheses: CsO )
1.456 (1.455) Å, OsC ) 1.287 (1.302) Å, CtN ) 1.156 (1.146) Å, Cs
OsC ) 115.6° (113.8°), OsCsN ) 177.9° (178.4°).
(41) Pasinszki, T.; Westwood, N. P. C. To be published.
(42) Teller, E. Hand-und Jahrb. d. Chem. Phys. 1934, 9 (II), 43.
Acknowledgment. We thank the Hungarian Scientific
Research Fund (OTKA Grant F022031) and the Natural
Sciences and Engineering Research Council of Canada (NSERC)
for research and equipment grants in support of this work. T.P.
thanks the Hungarian Academy of Sciences for the award of a
Janos Bolyai research scholarship.
References and Notes
(1) Kricheldorf, R.; Leppert, E. Synthesis 1976, 329.
(2) Pasinszki, T.; Westwood, N. P. C. J. Phys. Chem. 1995, 99, 1649.
(3) Sakaizumi, T.; Mure, H.; Ohashi, O.; Yamaguchi, I. J. Mol.
Spectrosc. 1990, 140, 62. Sakaizumi, T.; Sekishita, K.; Furuya, K.; Tetsuda,
Y.; Kaneko, K.; Ohashi, O.; Yamaguchi, I. J. Mol. Spectrosc. 1993, 161,
114. Sakaizumi, T.; Namikawa, M.; Ohashi, O. J. Mol. Struct. 1995, 345,
189.
(4) Wentrup, C.; Gerecht, B.; Laqua, D.; Briehl, H.; Winter, H.-W.;
Reisenauer, H. P.; Winnewisser, M. J. Org. Chem. 1981, 46, 1046. The
choice of nomenclature for compounds of the type RONC is variable. As
noted in this reference, and as used in the present paper, we use the IUPAC
name “fulminate” for RONC (NOC rule C-833.1; GNOC recommendation
R-5.9.7.2).
(5) Grundmann, Ch.; Grunanger, P. The Nitrile Oxides, Versatile Tools
of Theoretical and PreparatiVe Chemistry; Springer-Verlag: New York,
Heidelberg, Berlin, 1971. Torssell, K. B. G. In Nitrile Oxides, Nitrones,
and Nitronates in Organic Synthesis; Feuer, H., Ed.; Organic Nitro
Chemistry Series; VCH Publishers Inc.: New York, 1988.