Page 5 of 8
Journal of Medicinal Chemistry
idosqualene cyclase; rms, root mean square; TLC, thin layer chroꢀ (22) Benaim, G.; Sanders, J. M.; GarciaꢀMarchan, Y.; Colina, C.; Lira, R.;
Caldera, A. R.; Payares, G.; Sanoja, C.; Burgos, J. M.; LeonꢀRossell, A.;
matography
1
2
3
4
5
6
7
8
9
Concepcion, J. L.; Schijman, A. G.; Levin, M.; Oldfield, E.; Urbina, J. A.
Amiodarone has intrinsic antiꢀTrypanosoma cruzi activity and acts
synergistically with posaconazole. J. Med. Chem. 2006, 49, 892ꢀ899.
(
23) Balliano, G.; Dehmlow, H.; OliaroꢀBosso, S.; Scaldaferri, M.;
Taramino, S.; Viola, F.; Caron, G.; Aebi, J.; Ackermann, J. Oxidosqualene
1) Corey, E. J.; Russey, W. E.; Ortiz de Montellano, P. R. 2,3ꢀ cyclase from Saccharomyces cerevisiae, Trypanosoma cruzi, Pneumocystis
Oxidosqualene an intermediate in biological synthesis of sterols from carinii and Arabidopsis thaliana expressed in yeast: a model for the
squalene. J. Am. Chem. Soc. 1966, 88, 4750ꢀ4751.
development of novel antiparasitic agents. Bioorg. Med. Chem. Lett. 2009,
2) Van Tamelen, E. E.; Willett, J. D.; Clayton, R. B.; Lord, K. E. Enzymic 19, 718ꢀ723.
conversion of squalene 2,3ꢀoxide to lanosterol and cholesterol. J. Am. Chem. (24) Pyrah, I. T.; Kalinowski, A.; Jackson, D.; Davies, W.; Davis, S.;
Soc. 1966, 88, 4752ꢀ4754.
Aldridge, A.; Greaves, P. Toxicologic lesions associated with two related
REFERENCES
(
(
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(3) Mark, M.; Muller, P.; Maier, R.; Eisele, B. Effects of a novel 2,3ꢀ inhibitors of oxidosqualene cyclase in the dog and mouse. Toxicol. Pathol.
oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis 2001, 29, 174ꢀ179.
in HepG2 cells. J. Lipid Res. 1996, 37, 148ꢀ158.
(25) Mori, M.; Li, G.; Abe, I.; Nakayama, J.; Guo, Z.; Sawashita, J.; Ugawa,
(4) Morand, O. H.; Aebi, J. D.; Dehmlow, H.; Ji, Y. H.; Gains, N.; Lengsfeld, T.; Nishizono, S.; Serikawa, T.; Higuchi, K.; Shumiya, S. Lanosterol
H.; Himber, J. Ro 48ꢀ8071, a new 2,3ꢀoxidosqualene:lanosterol cyclase synthase mutations cause cholesterol deficiencyꢀassociated cataracts in the
inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and Shumiya cataract rat. J. Clin. Invest. 2006, 116, 395ꢀ404.
minipigs: comparison to simvastatin. J. Lipid Res. 1997, 38, 373ꢀ390.
(26) Zhao, L.; Chen, X. J.; Zhu, J.; Xi, Y. B.; Yang, X.; Hu, L. D.; Ouyang,
(5) Dehmlow, H.; Aebi, J. D.; Jolidon, S.; Ji, Y. H.; von der Mark, E. M.; H.; Patel, S. H.; Jin, X.; Lin, D.; Wu, F.; Flagg, K.; Cai, H.; Li, G.; Cao, G.;
Himber, J.; Morand, O. H. Synthesis and structureꢀactivity studies of novel Lin, Y.; Chen, D.; Wen, C.; Chung, C.; Wang, Y.; Qiu, A.; Yeh, E.; Wang,
orally active nonꢀterpenoic 2,3ꢀoxidosqualene cyclase inhibitors. J. Med. W.; Hu, X.; Grob, S.; Abagyan, R.; Su, Z.; Tjondro, H. C.; Zhao, X. J.; Luo,
Chem. 2003, 46, 3354ꢀ3370.
6) Cattel, L.; Ceruti, M.; Viola, F.; Delprino, L.; Balliano, G.; Duriatti, A.; Wang, J.; Zhang, L.; Liu, Y.; Yan, Y. B.; Zhang, K. Lanosterol reverses
BouvierꢀNave, P. The squaleneꢀ2,3ꢀepoxide cyclase as a model for the protein aggregation in cataracts. Nature 2015, 523, 607ꢀ611.
development of new drugs. Lipids 1986, 21, 31ꢀ38.
(27) Fouchet, M. H.; Donche, F.; Martin, C.; Bouillot, A.; Junot, C.; Boullay,
7) Jolidon, S.; Polak, A. M.; Guerry, P.; Hartman, P. G. Inhibitors of 2,3ꢀ A. B.; Potvain, F.; Magny, S. D.; Coste, H.; Walker, M.; Issandou, M.;
oxidosqualene lanosterolꢀcyclase as potential antifungal agents. Biochem. Dodic, N. Design and evaluation of a novel series of 2,3ꢀoxidosqualene
Soc. Trans. 1990, 18, 47ꢀ48.
cyclase inhibitors with low systemic exposure, relationship between
H.; Hou, R.; Perry, J. J.; Gao, W.; Kozak, I.; Granet, D.; Li, Y.; Sun, X.;
(
(
(8) Rabelo, V. W.; Romeiro, N. C.; Abreu, P. A. Design strategies of pharmacokinetic properties and ocular toxicity. Bioorg. Med. Chem. 2008,
oxidosqualene cyclase inhibitors: targeting the sterol biosynthetic pathway. 16, 6218ꢀ6232.
J. Steroid Biochem. Mol. Biol. 2017, 171, 305ꢀ317.
(28) Lenhart, A.; Reinert, D. J.; Aebi, J. D.; Dehmlow, H.; Morand, O. H.;
9) Miettinen, T. A. Cholesterol metabolism during ketoconazole treatment Schulz, G. E. Binding structures and potencies of oxidosqualene cyclase
(
in man. J. Lipid Res. 1988, 29, 43ꢀ51.
inhibitors with the homologous squaleneꢀhopene cyclase. J. Med. Chem.
(
10) Ghannoum, M. A.; Rice, L. B. Antifungal agents: mode of action, 2003, 46, 2083ꢀ2092.
mechanisms of resistance, and correlation of these mechanisms with (29) Giera, M.; Plossl, F.; Bracher, F. Fast and easy in vitro screening assay
bacterial resistance. Clin. Microbiol. Rev. 1999, 12, 501ꢀ517.
for cholesterol biosynthesis inhibitors in the postꢀsqualene pathway. Steroids
11) Polak, A. M. Preclinical data and mode of action of amorolfine. Clin. 2007, 72, 633ꢀ642.
(
Exp. Dermatol. 1992, 17 Suppl 1, 8ꢀ12.
(30) Müller, C.; Binder, U.; Bracher, F.; Giera, M. Antifungal drug testing
(
12) World Health Organization. Research priorities for Chagas disease, by combining minimal inhibitory concentration testing with target
human African trypanosomiasis and leishmaniasis. W. H. O. Tech. Rep. Ser. identification by gas chromatographyꢀmass spectrometry. Nat. Protoc. 2017,
012, 975, iꢀxii,1ꢀ100, WHO Press, Geneva, Switzerland.
12, 947ꢀ963.
2
(13) Rogers, N. Bugging out over Chagas: Bioluminescent protozoans and (31) Nakano, C.; Motegi, A.; Sato, T.; Onodera, M.; Hoshino, T. Sterol
old drugs might help unravel kissingꢀbug disease. Nat. Med. 2015, 21, 1108ꢀ biosynthesis by a prokaryote: first in vitro identification of the genes
1
(
110.
14) Engel, J. C.; Doyle, P. S.; Hsieh, I.; McKerrow, J. H. Cysteine protease capsulatus. Biosci. Biotechnol. Biochem. 2007, 71, 2543ꢀ2550.
inhibitors cure an experimental Trypanosoma cruzi infection. J. Exp. Med. (32) Malinowski, E. R. Factor Analysis in Chemistry. 3rd ed.; Wiley: New
998, 188, 725ꢀ734.
York, 2002.
15) VeigaꢀSantos, P.; Reignault, L. C.; Huber, K.; Bracher, F.; De Souza, (33) Yamasaki, K.; Tani, O.; Tateishi, Y.; Tanabe, E.; Namatame, I.; Niimi,
encoding squalene epoxidase and lanosterol synthase from Methylococcus
1
(
W.; De Carvalho, T. M. Inhibition of NAD+ꢀdependent histone deacetylases T.; Furukawa, K.; Sakashita, H. An NMR biochemical Assay for fragmentꢀ
(sirtuins) causes growth arrest and activates both apoptosis and autophagy in based drug discovery: evaluation of an inhibitor activity on spermidine
the pathogenic protozoan Trypanosoma cruzi. Parasitology 2014, 141, 814ꢀ synthase of Trypanosoma cruzi. J. Med. Chem. 2016, 59, 2261ꢀ2266.
8
(
25.
16) Urbina, J. A. Lipid biosynthesis pathways as chemotherapeutic targets Wakuda, T.; Okada, M.; Kohzuma, T. Realꢀtime NMR monitoring of
in kinetoplastid parasites. Parasitology 1997, 114 Suppl, S91ꢀ99.
proteinꢀfolding kinetics by a recycle flow system for temperature jump.
(34) Yamasaki, K.; Obara, Y.; Hasegawa, M.; Tanaka, H.; Yamasaki, T.;
(17) Beach, D. H.; Goad, L. J.; Holz, G. G., Jr. Effects of ketoconazole on Anal. Chem. 2013, 85, 9439ꢀ9443.
sterol biosynthesis by Trypanosoma cruzi epimastigotes. Biochem. Biophys. (35) Yamamoto, S.; Lin, K.; Bloch, K. Some properties of the microsomal
Res. Commun. 1986, 136, 851ꢀ856.
18) Urbina, J. A.; Vivas, J.; Visbal, G.; Contreras, L. M. Modification of the 110ꢀ117.
2,3ꢀoxidosqualene sterol cyclase. Proc. Natl. Acad. Sci. U. S. A. 1969, 63,
(
sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes (36) Erlanson, D. A.; McDowell, R. S.; O'Brien, T. Fragmentꢀbased drug
by delta 24(25)ꢀsterol methyl transferase inhibitors and their combinations discovery. J. Med. Chem. 2004, 47, 3463ꢀ3482.
1
13
with ketoconazole. Mol. Biochem. Parasitol. 1995, 73, 199ꢀ210.
(37) Emmons, G. T.; Wilson, W. K.; Schroepfer, G. J. H and C NMR
(19) Urbina, J. A.; Payares, G.; Contreras, L. M.; Liendo, A.; Sanoja, C.; assignments for lanostanꢀ3 β ꢀol derivatives: revised assignments for
Molina, J.; Piras, M.; Piras, R.; Perez, N.; Wincker, P.; Loebenberg, D.
Antiproliferative effects and mechanism of action of SCH 56592 against
Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies.
Antimicrob. Agents Chemother. 1998, 42, 1771ꢀ1777.
lanosterol. Magn. Reson. Chem. 1989, 27, 1012ꢀ1024.
(38) Keller, M.; Wolfgardt, A.; Muller, C.; Wilcken, R.; Bockler, F. M.;
OliaroꢀBosso, S.; Ferrante, T.; Balliano, G.; Bracher, F. Arylpiperidines as a
new class of oxidosqualene cyclase inhibitors. Eur. J. Med. Chem. 2016,
(20) Buckner, F. S.; Griffin, J. H.; Wilson, A. J.; Van Voorhis, W. C. Potent
1
(
09, 13ꢀ22.
39) Dalvit, C. Efficient multipleꢀsolvent suppression for the study of the
interactions of organic solvents with biomolecules. J. Biomol. NMR 1998,
1, 437ꢀ444.
40) Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer
antiꢀTrypanosoma cruzi activities of oxidosqualene cyclase inhibitors.
Antimicrob. Agents Chemother. 2001, 45, 1210ꢀ1215.
(21) OliaroꢀBosso, S.; Ceruti, M.; Balliano, G.; Milla, P.; Rocco, F.; Viola, F.
1
(
Analogs of squalene and oxidosqualene inhibit oxidosqualene cyclase of
Trypanosoma cruzi expressed in Saccharomyces cerevisiae. Lipids 2005, 40,
difference NMR to identify segments of a ligand in direct contact with a
protein receptor. J. Am. Chem. Soc. 2001, 123, 6108ꢀ6117.
1
257ꢀ1262.
5
ACS Paragon Plus Environment