Communications
monofunctionalized end groups and narrow polydispersity
Chem. Int. Ed. 1999, 38, 2416; W. A. Herrmann, Angew. Chem.
002, 114, 1342; Angew. Chem. Int. Ed. 2002, 41, 1290.
6] H. D. Maynard, R. H. Grubbs, Macromolecules 1999, 32, 6917;
M. Weck, B. Mohr, B. R. Maughon, R. H. Grubbs, Macro-
molecules 1997, 30, 6430.
2
will allow numerous new applications in fields that previously
relied on monofunctionalized polymers from carbanionic
polymerization.
[
[
7] H. Katayama, H. Urushima, F. Ozawa, Chem. Lett. 1999, 269; H.
Katayama, H. Urushima, T. Nishioka, C. Wada, M. Nagao, F.
Ozawa, Angew. Chem. 2000, 112, 4687; Angew. Chem. Int. Ed.
2000, 39, 4513; P. A. van der Schaaf, R. Kolly, H.-J. Kirner, F.
Rime, A. Mꢁhlebach, A. Hafner, J. Organomet. Chem. 2000, 606,
65; J. Louie, R. H. Grubbs, Organometallics 2002, 21, 2153.
Experimental Section
General procedure for the synthesis of block copolymers: Triphenyl-
phosphine (6.3 equiv) and 2 were sealed in a Schlenk flask, which was
evacuated and charged with nitrogen twice. Dichloromethane
(
ca. 10 mL per gram of monomer) was then added by cannula
[8] H. Katayama, H. Urushima, F. Ozawa, J. Organomet. Chem.
2000, 606, 16.
transfer. Polymerization was initiated by quickly adding a solution of
the appropriate amount of catalyst 1 in dichloromethane (ca. 1 mL
per 100 mg of 1) by syringe to the stirred solution. Reaction times
were dependent on the desired molecular weight of the polymer (7 h
for 3000 gmol , 13 h for 5000 gmol , 24 h for 10000 gmol , all at
room temperature). Upon completion of the reaction time, the cyclic
olefinic acetal was added to the mixture (1 mL of 4a or 4b per gram of
polymer) and allowed to react for another 10 h. The reaction was
quenched with ethyl vinyl ether (1 mL). The product was precipitated
into methanol, dissolved in chloroform, and reprecipitated into
methanol. The block copolymer was dried to yield 70–80% of a
brown solid.
[9] R. M. Owen, J. E. Gestwicki, T. Young, L. L. Kiessling, Org.
Lett. 2002, 4, 2293; J. E. Gestwicki, C. W. Cairo, D. A. Mann,
R. M. Owen, L. L. Kiessling, Anal. Biochem. 2002, 305, 149; E. J.
Gordon, J. E. Gestwicki, L. E. Strong, L. K. Kiessling, Chem.
Biol. 2000, 7, 9; B. Chen, H. F. Sleiman, Macromolecules 2005,
38, 1084.
[10] S. C. G. Biagini, R. G. Davie, V. C. Gibson, M. R. Giles, E. L.
Marshall, M. North, Polymer 2001, 42, 6669.
[11] K. S. Roberts, N. S. Sampson, Org. Lett. 2004, 6, 3253.
[12] T. Morita, B. R. Maughon, C. W. Bielawski, R. H. Grubbs,
Macromolecules 2000, 33, 6621.
À1
À1
À1
General procedure for cleaving of the second block: HCl (6m,
mL) and methanol (2 mL) were added to a solution of the block
[13] C. W. Bielawski, R. H. Grubbs, Macromolecules 2001, 34, 8838.
[14] C. Fraser, M. A. Hillmyer, E. Gutierrez, R. H. Grubbs, Macro-
molecules 1995, 28, 7256.
4
copolymer (1 g) in dichloromethane (10 mL). The mixture was stirred
for 12 h at room temperature and subsequently precipitated into
methanol. The solid was recovered, dissolved in chloroform, and
reprecipitated into methanol. The polymer was dried under vacuum
to give a white solid (850 mg, ca. 80%, depending on the block ratio).
Detailed experimental procedures are described in the Support-
ing Information.
Received: June 9, 2006
Revised: August 29, 2006
Published online: October 31, 2006
Keywords: block copolymers · dioxepine · metathesis · polymer
.
chemistry · ring-opening polymerization
[
1] U. Frenzel, O. Nuyken, J. Polym. Sci. Part A 2002, 40, 2895; C.
Slugovc, Macromol. Rapid Commun. 2004, 25, 1283.
[
[
2] L. R. Gilliom, R. H. Grubbs, J. Am. Chem. Soc. 1986, 108, 733.
3] M. B. OꢀDonoghue, R. R. Schrock, A. M. LaPointe, W. M.
Davis, Organometallics 1996, 15, 1334; J. S. Murdzek, R. R.
Schrock, Macromolecules 1987, 20, 2640; R. R. Schrock, J. S.
Murdzek, G. C. Bazan, J. Robbins, M. DiMare, M. OꢀRegan, J.
Am. Chem. Soc. 1990, 112, 3875.
[
4] K. A. Brown-Wensley, S. L. Buchwald, L. Cannizzo, L. Clawson,
S. Ho, D. Meinhardt, J. R. Stille, D. Straus, R. H. Grubbs, Pure
Appl. Chem. 1983, 55, 1733; D. Albagli, G. C. Bazan, R. R.
Schrock, M. S. Wrighton, J. Phys. Chem. 1993, 97, 10211; D.
Albagle, G. C. Bazan, R. R. Schrock, M. S. Wrighton, J. Am.
Chem. Soc. 1993, 115, 7328; K. Nomura, S. Takahashi, Y.
Imanishi, Macromolecules 2001, 34, 4712.
[
5] S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. Am. Chem. Soc.
1
1
992, 114, 3974; S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc.
993, 115, 9858; P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am.
Chem. Soc. 1996, 118, 100; A. K. Chatterjee, J. P. Morgan, M.
Scholl, R. H. Grubbs, J. Am. Chem. Soc. 2000, 122 ,3783; M.
Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953;
J. Huang, E. D. Stevens, S. P. Nolan, J. L. Peterson, J. Am. Chem.
Soc. 1999, 121, 2674; T. Weskamp, F. J. Kohl, W. Hieringer, D.
Gleich, W. A. Herrmann, Angew. Chem. 1999, 111, 2573; Angew.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 8045 –8048