Organic Letters
Letter
(
4) (a) Srihari, P.; Kumaraswamy, B.; Yadav, J. S. Tetrahedron 2009,
ppm. We observed similar overestimations when we tested the
method on the reported structure, compared to our experimental
spectra. We think there is a systematic error of overestimating carbons
conjugated (β and δ carbons) to an electron-withdrawing group .
65, 6304−6309. (b) Alcaraz, L.; Cridland, A.; Kinchin, E. Org. Lett.
2001, 3, 4051−4053. (c) Bode, J. W.; Carreira, E. M. J. Org. Chem.
2001, 66, 6410−6424.
(
5) (a) Wardrop, D. J.; Velter, A. I.; Forslund, R. E. Org. Lett. 2001,
3
2
, 2261−2264. (b) Wardrop, D. J.; Forslund, R. E. Tetrahedron Lett.
002, 43, 737−739. (c) Wardrop, D. J.; Forslund, R. E.; Landrie, C.
L.; Velter, A. I.; Wink, D.; Surve, B. Tetrahedron: Asymmetry 2003, 14,
29−940.
6) Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2010, 49, 5894−
897.
7) (a) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112,
9
(
5
(
5
525−5534. (b) Cozzi, F.; Cinquini, M.; Annunziata, R.; Dwyer, T.;
Siegel, J. S. J. Am. Chem. Soc. 1992, 114, 5729−5733. (c) Ringer, A.
L.; Sinnokrot, M. O.; Lively, R. P.; Sherrill, C. D. Chem. - Eur. J. 2006,
1
2
1
2, 3821−3828. (d) Wheeler, S. E.; Houk, K. N. J. Am. Chem. Soc.
008, 130, 10854−10855. (e) Wheeler, S. E. J. Am. Chem. Soc. 2011,
33, 10262−10274. We favor the T-shaped configuration as we
believe it might be more conformationally compatible in our system.
(
(
8) Molander, G. A.; Haar, J. P. J. Am. Chem. Soc. 1993, 115, 40−49.
9) (a) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043−1054.
(
b) Hayashi, Y.; Wariishi, K.; Mukaiyama, T. Chem. Lett. 1987, 16,
1
243−1246.
10) (a) Lavinda, O.; Tran, V. T.; Woerpel, K. A. Org. Biomol. Chem.
014, 12, 7083−7091. (b) Garcia, A.; Otte, D. A.; Salamant, W. A.;
Sanzone, J. R.; Woerpel, K. A. J. Org. Chem. 2015, 80, 4470−4480.
c) Garcia, A.; Sanzone, J. R.; Woerpel, K. A. Angew. Chem., Int. Ed.
015, 54, 12087−12090.
11) For a review on the applications of Parkins’ catalyst, see:
a) Cadierno, V. Appl. Sci. 2015, 5, 380−401. (b) For a recent
application of Parkins’ catalyst (substoichiometric) in total synthesis,
see: Richter, M. J. R.; Schneider, M.; Brandstatter, M.; Krautwald, S.;
Carreira, E. M. J. Am. Chem. Soc. 2018, 140, 16704−16710.
12) (a) Lee, J.; Kim, M.; Chang, S. B.; Lee, H. Y. Org. Lett. 2009,
1, 5598−5601. (b) For a recent application of this method using
(
2
(
2
(
(
̈
(
1
Wilkinson’s catalyst in total synthesis, see: Kou, K. G. M.; Kulyk, S.;
Marth, C. J.; Lee, J. C.; Doering, N. A.; Li, B. X.; Gallego, G. M.;
Lebold, T. P.; Sarpong, R. J. Am. Chem. Soc. 2017, 139, 13882−13896.
(
13) Fuji, K.; Ichikawa, K.; Node, M.; Fujita, E. J. Org. Chem. 1979,
4
(
4, 1661−1664.
14) (a) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem.,
Int. Ed. 2002, 41, 4038−4040. (b) Michrowska, A.; Bujok, R.;
Harutyunyan, S.; Sashuk, V.; Dolgonos, G.; Grela, K. J. Am. Chem. Soc.
2
(
1
004, 126, 9318−9325.
15) (a) Imamoto, T.; Sugiura, Y. J. Phys. Org. Chem. 1989, 2, 93−
02. (b) Imamoto, T.; Sugiura, Y. J. Organomet. Chem. 1985, 285,
C21−C23. (c) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura,
Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49,
3
904−3912. (d) Liu, H. J.; Shia, K. S.; Shang, X.; Zhu, B. Y.
Tetrahedron 1999, 55, 3803−3830.
16) (a) For a recent review, see: Engel, D. A.; Dudley, G. B. Org.
(
Biomol. Chem. 2009, 7, 4149−4158. (b) Engel, D. A.; Lopez, S. S.;
Dudley, G. B. Tetrahedron 2008, 64, 6988−6996. We subjected the
isolated product (1) to standard reaction conditions; we observed no
transesterification. We concluded that the methoxy exchange occurred
alkoxy exchange.
(
17) For a review on the role of total synthesis in structural revision,
see: Nicolaou, K. C.; Snyder, S. A. Angew. Chem., Int. Ed. 2005, 44,
012−1044.
18) For a structurally related natural product, see: Zhu, B.;
1
(
Morioka, M.; Nakamura, H.; Naganawa, H.; Muraoka, Y.; Okami, Y.;
Umezawa, H. J. Antibiot. 1984, 37, 673−674.
(
19) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Chem. Rev.
2
012, 112, 1839−1862 We note that for constitutional isomer CS2
3
there are 2 stereoisomers, four of which are NMR-distinguishable
diastereomers, corresponding to CS2−CS5. We also note that for
CS5 the chemical shift for C-3 still has an absolute deviation of 5.0
E
Org. Lett. XXXX, XXX, XXX−XXX