10.1002/chem.202002155
Chemistry - A European Journal
COMMUNICATION
[16] V. M. Dong, D. Fiedler, B. Carl, R. G. Bergman, K. N. Raymond, J. Am.
Chem. Soc. 2006, 128, 14464–14465.
advantages of 7-DK1, along with its limited interactions between
the molecules in the crystal, would facilitate conversion to
heptacene. As mentioned, the generation and characterization of
heptacene has only been achieved under stringent
[17] T. Iwasawa, R. J. Hooley, Jr J. Rebek, Science 2007, 317, 493–496.
[18] P. Mal, B. Breiner, K. Rissanen, J. R. Nitschke, Science 2009, 324, 1697–
1699.
conditions.22,25,27,29
Accordingly,
the
visible-light-induced
[19] N. Nishimura, K. Kobayashi, J. Org. Chem. 2010, 75, 6079–6085.
[20] S. Horiuchi, T. Murase, M. Fujita, J. Am. Chem. Soc. 2011, 133, 12445–
12447.
generation of photo-unstable heptacenes presents as being an
“unreasonable” strategy. However, herein, the intensity of
heptacene absorption had unquestionably increased with
increasing photoirradiation time, even under ambient conditions.
This result strongly indicated that the generated heptacene
molecules in the crystal were protected from oxidation, while the
possibility of heptacene decomposition cannot be entirely
excluded. The favorable thermal stability of heptacene following
the conversion would provide for further applications, such as
organic field-effect transistors and organic solar cells. Notably,
comparable results were obtained for three individual crystals of
7-DK1, when subjected to the same conditions, guaranteeing the
reliability of this approach.
In summary, we have demonstrated the visible-light-
induced generation of heptacene under ambient conditions.
Pivotal to the success of this method was the selective irradiation
of the crystal interior, with the generated heptacenes being
shielded by heptacene precursors on the outer regions of the
crystal. This strategy provides efficient access to otherwise
inaccessible compounds. We believe that this approach is of
general relevance for the synthesis and characterization of
unstable molecules.
[21] M. Yamashita, Y. Sei, M. Akita, M. Yoshizawa, Nat. Commun. 2014, 5,
4662.
[22] J. I. Urgel, S. Mishra, H. Hayashi, J. Wilhelm, C. A. Pignedoli, M. D.
Giovannantonio, R. Widmer, M. Yamashita, N. Hieda, P. Ruffieux, H.
Yamada, R. Fasel, Nat. Commun. 2019, 10, 861.
[23] J. Strating, B. Zwanenburg, A. Wagenaar, A. C. Udding, Tetrahedron Lett.
1969, 10, 125–128.
[24] H. Yamada, Y. Yamashita, M. Kikuchi, H. Watanabe, T. Okujima, H. Uno,
T. Ogawa, K. Ohara, N. Ono, J. Chem.–Eur. J. 2005, 11, 6212–6220.
[25] R. Mondal, B. K. Shah, D. C. Neckers, J. Am. Chem. Soc. 2006, 128,
9612–9613.
[26] C. Tönshoff, H. F. Bettinger, Angew. Chem. Int. Ed. 2010, 49, 4125–4128.
[27] M. Zugermeier, M. Gruber, M. Schmid, B. P. Klein, L. Ruppenthal, P.
Müller, R. Einholz, W. Hieringer, R. Berndt, H. F. Bettinger, J. M. Gottfried,
Nanoscale 2017, 9, 12461–12469.
[28] B. Shen, J. Tatchen, E. Sanchez-Garcia, H. F. Bettinger, Angew. Chem.
Int. Ed. 2018, 57, 10506–10509.
[29] R. Einholz, T. Fang, R. Berger, P. Grüninger, A. Früh, T. Chassé, R. F.
Fink, H. F. Bettinger, J. Am. Chem. Soc. 2017, 139, 4435–4442.
[30] A. Jancarik, G. Levet, A. Gourdon, Chem.–Eur. J. 2019, 25, 2366–2374.
[31] S. Masuo, K. Tanaka, M. Oe, H. Yamada, Phys. Chem. Chem. Phys.
2014, 16, 13483–13488.
[32] M. Yamauchi, Y. Miyamoto, M. Suzuki, H. Yamada, S. Masuo, Phys.
Chem. Chem. Phys. 2019, 21, 6348–6353.
[33] J. I. Urgel, H. Hayashi, M. D. Giovannantonio, C. A. Pignedoli, S. Mishra,
O. Deniz, M. Yamashita, T. Dienel, P. Ruffieux, H. Yamada, R. Fasel, J.
Am. Chem. Soc. 2017, 139, 11658–11661.
Acknowledgements
[34] Crystallographic data for 7-DK2: C34H18O4, MW = 490.48, Monoclinic,
space group C2/c, a = 21.829(5), b = 8.367(2), c = 13.012(3) Å, b =
98.919(5)°, V = 2347.8(10) Å3, T = 90 K, Z = 4, reflections measured
5298, 1743 unique. The final R1 was 0.0559 (I > 2s(I)), and the final wR
on F2 was 0.1841 (all data), GOF = 0.998.
This work was partly supported by CREST JST (No.
JPMJCR15F1) and Grants-in-Aid for Scientific Research (Nos.
JP17H03042, JP19H04584,
JP18K14195, and JP20H02816).
JP18K14190,
JP18H01958,
[35] Crystallographic data for 7-DK1: C32.5H19O2Cl, MW = 476.93, Monoclinic,
space group P21/c, a = 18.385(15), b = 6.379(5), c = 24.22(2) Å, b =
127.879(10)°, V = 2242(3) Å3, T = 90 K, Z = 4, reflections measured 9756,
3212 unique. The final R1 was 0.0978 (I > 2s(I)), and the final wR on F2
was 0.2408 (all data), GOF = 1.022.
Keywords: heptacene • single crystal • photoconversion •
isolated reaction site • precursor approach
[1]
[2]
[3]
M. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251–254.
Z. Huang, P. S. White, M. Brookhart, Nature 2010, 465, 598–601.
M. Yoshizawa, J. K. Klosterman, M. Fujita, Angew. Chem. Int. Ed. 2009,
48, 3418–3438.
[4]
[5]
H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B.
Knobler, B. Wang, O. M. Yaghi, Science 2006, 327, 846–850.
H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li, H.-C. Zhou, J. Am. Chem. Soc.
2012, 134, 14690–14693.
[6]
[7]
[8]
M. Zhao, S. Ou, C.-D. Wu, Acc. Chem. Res. 2014, 47, 1199–1207.
D. Yang, B. C. Gates, ACS Catal. 2019, 9, 1779–1798.
S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 2007, 446,
778–781.
[9]
R. O. Al-Kaysi, A. M. Müller, C. J. Bardeen, J. Am. Chem. Soc. 2006,
128, 15938–15939.
[10] C. Hu, U. Englert, Angew. Chem. Int. Ed. 2006, 45, 3457–3459.
[11] P. Kissel, R. Erni, B. Schweizer, M. D. Rossell, B. T. King, T. Bauer, S.
Götzinger, A. D. Schlüter, J. Sakamoto, Nat. Chem. 2012, 4, 287–291.
[12] P. Kissel, D. J. Murray, W. J. Wulftange, V. J. Catalano, B. T. King, Nat.
Chem. 2014, 6, 774–778.
[13] D. J. Cram, E. Tanner, R. Thomas, Angew. Chem. Int. Ed. 1991, 30,
1024–1027.
[14] R. Warmuth, M. A. Marvel, Angew. Chem. Int. Ed. 2000, 39, 1117–1119.
[15] M. Ziegler, J. L. Brumaghim, K. N. Raymond, Angew. Chem. Int. Ed.
2000, 39, 4119–4121.
4
This article is protected by copyright. All rights reserved.