343
T. Yamakawa et al.
Cluster
Synlett
pyridine through vinylic C–H oxidative addition and reduc-
tive elimination of alkane R–H to give a cobaltacycle C.12
Single-electron transfer from the intermediate C to the alkyl
halide is followed by the coupling of the resulting alkenyl-
cobalt species and alkyl radical (D),13 thus affording the al-
kylation product.14,15 Transmetalation of the cobalt halide E
and the Grignard reagent regenerates the initial species A.
In light of the ratio of 3al and 3al′ (Scheme 1), the C–C bond
formation would occur at a relatively fast rate. The putative
C–H oxidative addition intermediate B may be responsible
for the formation of the olefin insertion products 5 and 6.
References and Notes
(1) Ackermann, L. Chem. Commun. 2010, 46, 4866.
(2) For selected reviews, see: (a) Kakiuchi, F.; Kochi, T. Synthesis
2008, 3013. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem.
Rev. 2010, 110, 624. (c) Ackermann, L. Chem. Rev. 2011, 111,
1315. (d) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev.
2012, 112, 5879.
(3) Ackermann, L.; Novák, P.; Vicente, R.; Hofmann, N. Angew.
Chem. Int. Ed. 2009, 48, 6045.
(4) (a) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009,
48, 6097. (b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010,
132, 3965. (c) Zhao, Y.-S.; Chen, G. Org. Lett. 2011, 13, 4850.
(5) (a) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308.
(b) Song, W.; Lackner, S.; Ackermann, L. Angew. Chem. Int. Ed.
2014, 53, 2477.
CoBr2, NHC⋅HX
RMgBr
N
(6) (a) Gao, K.; Yoshikai, N. J. Am. Chem. Soc. 2013, 135, 9279.
(b) Punji, B.; Song, W. F.; Shevchenko, G. A.; Ackermann, L.
Chem. Eur. J. 2013, 19, 10605. (c) Gao, K.; Yamakawa, T.;
Yoshikai, N. Synthesis 2014, 46, 2024.
(7) (a) Ilies, L.; Matsubara, T.; Ichikawa, S.; Asako, S.; Nakamura, E.
J. Am. Chem. Soc. 2014, 136, 13126. (b) Fruchey, E. R.; Monks, B.
M.; Cook, S. P. J. Am. Chem. Soc. 2014, 136, 13130. (c) Monks, B.
M.; Fruchey, E. R.; Cook, S. P. Angew. Chem. Int. Ed. 2014, 53,
11065.
(8) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208.
(9) For an example of cobalt-catalyzed olefinic C–H functionaliza-
tion, see: Yamakawa, T.; Yoshikai, N. Org. Lett. 2013, 15, 196.
(10) For examples of other types of olefinic C–H functionalization of
2-alkenylpyridines, see: (a) Oi, S.; Sakai, K.; Inoue, Y. Org. Lett.
2005, 7, 4009. (b) Ackermann, L.; Born, R.; Alvarez-Bercedo, P.
Angew. Chem. Int. Ed. 2007, 46, 6364. (c) Kuninobu, Y.; Fujii, Y.;
Matsuki, T.; Nishina, Y.; Takai, K. Org. Lett. 2009, 11, 2711.
(d) Ilies, L.; Asako, S.; Nakamura, E. J. Am. Chem. Soc. 2011, 133,
7672. (e) Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2012,
14, 4498.
MgBrX
[Co]
R
A
RMgBr
[Co]
X
N
E
[Co]
R
H
N
B
Alkyl
R
H
N
N
[Co]
X
[Co]
Alkyl•
C
Alkyl
X
D
Scheme 2 Proposed catalytic cycle
(11) (a) Li, B.; Wu, Z.-H.; Gu, Y.-F.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J.
Angew. Chem. Int. Ed. 2011, 50, 1109. (b) Yamakawa, T.;
Yoshikai, N. Chem. Asian J. 2014, 9, 1242.
(12) Klein, H.-F.; Camadanli, S.; Beck, R.; Leukel, D.; Flörke, U. Angew.
Chem. Int. Ed. 2005, 44, 975.
(13) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2001, 123, 5374.
(14) (a) Ohmiya, H.; Wakabayashi, K.; Yorimitsu, H.; Oshima, K. Tet-
rahedron 2006, 62, 2207. (b) Ohmiya, H.; Yorimitsu, H.; Oshima,
K. J. Am. Chem. Soc. 2006, 128, 1886. (c) Cahiez, G.; Chaboche, C.;
Duplais, C.; Moyeux, A. Org. Lett. 2009, 11, 277.
In summary, we have demonstrated that the cobalt–
NHC catalytic system is capable of promoting olefinic C–H
alkylation with primary and secondary alkyl chlorides, pre-
sumably through single-electron transfer as one of the key
steps.16 The present study has also indicated the potential
of cobalt catalysis for olefinic C–H alkylation through the
insertion of simple olefins.17
(15) For reviews on cobalt-catalyzed cross-coupling reactions, see:
(a) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435. (b) Hess,
W.; Treutwein, J.; Hilt, G. Synthesis 2008, 3537. (c) Gosmini, C.;
Begouin, J. M.; Moncomble, A. Chem. Commun. 2008, 3221.
(d) Yorimitsu, H.; Oshima, K. Pure Appl. Chem. 2006, 78, 441.
(16) General Procedure for 2-{[1,1′-Bi(cyclohexan)]-1-en-2-
yl}pyridine (3aa): In a 10-mL Schlenk tube were placed CoBr2
(0.3 M in THF, 0.10 mL, 0.030 mmol), 1,3-diisopropylbenzimid-
azolium bromide (L2; 8.5 mg, 0.030 mmol), 2-(cyclohex-1-en-
1-yl)pyridine (1a; 47.8 mg, 0.30 mmol), chlorocyclohexane (2a;
53.6 μL, 0.45 mmol), TMEDA (90 μL, 0.60 mmol) and THF (0.28
mL). To the mixture was added a THF solution of t-BuCH2MgBr
(0.96 M, 0.63 mL, 0.60 mmol) dropwise at 0 °C. The reaction
mixture was stirred at r.t. for 6 h, and then quenched by the
addition H2O (1.0 mL). The resulting mixture was extracted
with EtOAc (3 × 3 mL). The combined organic layer was dried
Acknowledgment
This work was supported by the Singapore National Research Founda-
tion (NRF-RF2009-05), Nanyang Technological University, and JST,
CREST.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 340–344