10.1002/anie.202014660
Angewandte Chemie International Edition
COMMUNICATION
[2] a) P. Buchgraber, T. N. Snaddon, C. Wirtz, R. Mynott, R. Goddard, A.
Furstner, Angew. Chem. Int. Ed. 2008, 47, 8450-8454; Angew. Chem.
2008, 120, 8578-8582; b) T. N. Snaddon, P. Buchgraber, S. Schulthoff, C.
Wirtz, R. Mynott, A. Furstner, Chem. Eur. J. 2010, 16, 12133-12140.
[3] a) J. Zhou, B. B. Snider, Org. Lett. 2007, 9, 2071-2074; b) X. Wu, J. Zhou,
B. B. Snider, Angew. Chem. Int. Ed. 2009, 48, 1283-1286; Angew. Chem.
2009, 121, 1309-1312; c) X. Wu, J. Zhou, B. B. Snider, J. Org. Chem.
2009, 74, 6245-6252.
Eur. J. 2019, 25, 989-992; o) F. F. Pan, P. Guo, C. L. Li, P. Su, X. Z. Shu,
Org. Lett. 2019, 21, 3701-3705; p) J. Zhuo, Y. Zhang, Z. Li, C. Li, ACS
Catal. 2020, 10, 3895-3903; q) J. Wang, M. E. Hoerrner, M. P. Watson, D.
J. Weix, Angew. Chem. Int. Ed. 2020, 59, 13484-13489; Angew. Chem.
2020, 132, 13586-13591.
[10] a) H.-G. Cheng, C. Wu, H. Chen, R. Chen, G. Qian, Z. Geng, Q. Wei, Y.
Xia, J. Zhang, Y. Zhang, Q. Zhou, Angew. Chem. Int. Ed. 2018, 57, 3444-
3448; Angew. Chem. 2018, 130, 3502-3506; b) C. Wu, H.-G. Cheng, Q.
Zhou, Synlett 2020, 31, 829-837.
[4] a) C. F. Bender, F. K. Yoshimoto, C. L. Paradise, J. K. De Brabander, J.
Am. Chem. Soc. 2009, 131, 11350-11352; b) C. F. Bender, C. L. Paradise,
V. M. Lynch, F. K. Yoshimoto, J. K. De Brabander, Tetrahedron 2018, 74,
909-919.
[11] For seminal work, see: a) M. Catellani, F. Frignani, A. Rangoni, Angew.
Chem. Int. Ed. Engl. 1997, 36, 119-122; Angew. Chem. 1997, 109, 142-
145. For selected total synthesis examples applying the Catellani-type
reaction as the key step, see: b) L. Jiao, E. Herdtweck, T. Bach, J. Am.
Chem. Soc. 2012, 134, 14563-14572; c) H. Weinstabl, M. Suhartono, Z.
Qureshi, M. Lautens, Angew. Chem. Int. Ed. 2013, 52, 5305–5308; Angew.
Chem. 2013, 125, 5413–5416; d) M. Mizutani, S. Yasuda, C. Mukai, Chem.
Commun. 2014, 50, 5782-5785; e) K. Zhao, S. Xu, C. Pan, X. Sui, Z. Gu,
Org. Lett. 2016, 18, 3782-3785; f) S.-Z. Jiang, X.-Y. Zeng, X. Liang, T. Lei,
K. Wei, Y.-R. Yang, Angew. Chem. Int. Ed. 2016, 55, 4044–4048; Angew.
Chem. 2016, 128, 4112-4116; g) T. Xiao, Z.-T. Chen, L.-F. Deng, D.
Zhang, X.-Y. Liu, H. Song, Y. Qin, Chem. Commun. 2017, 53, 12665–
12667; h) F. Liu, Z. Dong, J. Wang, G. Dong, Angew. Chem. Int. Ed. 2019,
58, 2144-2148; i) S. Gao, G. Qian, H. Tang, Z. Yang, Q. Zhou,
ChemCatChem 2019, 11, 5762-5765; j) K. Yoshida, K. Okada, H. Ueda,
H. Tokuyama, Angew. Chem. Int. Ed. 2020, DOI:10.1002/anie.202010759.
[12] F. Björkling, J. Boutelje, S. Gatenbeck, K. Hult, T. Norin, P. Szmulik,
Tetrahedron 1985, 41, 1347-1352.
[5] a) F. J. Fananas, A. Mendoza, T. Arto, B. Temelli, F. Rodriguez, Angew.
Chem. Int. Ed. 2012, 51, 4930-4933; Angew. Chem. 2012, 124, 5014-
5017; b) T. Arto, A. Mendoza, F. J. Fañanás, F. Rodríguez, in Strategies
and Tactics in Organic Synthesis, Harmata, M., Ed. Elsevier: Amsterdam,
2014; pp 33-49; c) T. Arto, I. S. de Santa-María, M.-D. Chiara, F. J.
Fañanás, F. Rodríguez, Eur. J. Org. Chem. 2016, 5876-5880.
[6] a) Y. Huang, T. R. Pettus, Synlett 2008, 9, 1353-1356; b) T. A. Wenderski,
M. A. Marsini, T. R. Pettus, Org. Lett. 2011, 13, 118-121.
[7] a) Z. E. Wilson, M. A. Brimble, Org. Biomol. Chem. 2010, 8, 1284-1286;
b) M. C. McLeod, Z. E. Wilson, M. A. Brimble, Org. Lett. 2011, 13, 5382-
5385; c) M. A. Brimble, I. Haym, J. Sperry, D. P. Furkert, Org. Lett. 2012,
14, 5820-5823; d) M. C. McLeod, Z. E. Wilson, M. A. Brimble, J. Org.
Chem. 2012, 77, 400-416.
[8] The recent bioactivity studies of (–)-berkelic acid (see refs. 3c, 4b and 5c)
are inconsistent with the originally reported ones (see ref. 1), which
deserves further systematic studies.
[13] S. Blechert, P. Dewi-Wülfing, J. Gebauer, Synlett 2006, 0487-0489.
[14] For the gram-scale preparation of building blocks 7 and 8, please see
supplementary information (SI) for details.
[9] For selected reviews, see: a) T. Moragas, A. Correa, R. Martin, Chem.
Eur. J. 2014, 20, 8242-8258; b) C. E. Knappke, S. Grupe, D. Gartner, M.
Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20 ,
6828-6842; c) D. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793-
4798; d) J. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2,
1411-1421; e) X. Wang, Y. Dai, H. Gong, Top. Curr. Chem. 2016, 374, 43.
For selected recent examples, see: f) A. C. Wotal, D. J. Weix, Org. Lett.
2012, 14, 1476-1479; g) F. Wu, W. Lu, Q. Qian, Q. Ren, H. Gong, Org.
Lett. 2012, 14, 3044-3047; h) H. Yin, C. Zhao, H. You, K. Lin, H. Gong,
Chem. Commun. 2012, 48, 7034-7036; i) A. H. Cherney, N. T. Kadunce,
S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442-7445; j) C. Zhao, X.
Jia, X. Wang, H. Gong, J. Am. Chem. Soc. 2014, 136, 17645-17651; k) X.
Jia, X. Zhang, Q. Qian, H. Gong, Chem. Commun. 2015, 51, 10302-
10305; l) X. Lu, Y. Wang, B. Zhang, J. J. Pi, X. X. Wang, T. J. Gong, B.
Xiao, Y. Fu, J. Am. Chem. Soc. 2017, 139, 12632-12637; m) S. Z. Sun,
M. Borjesson, R. Martin-Montero, R. Martin, J. Am. Chem. Soc. 2018, 140,
12765-12769; n) L. Luo, X. Y. Zhai, Y. W. Wang, Y. Peng, H. Gong, Chem.
[15] K. Yu, Z. N. Yang, C. H. Liu, S. Q. Wu, X. Hong, X. L. Zhao, H. Ding,
Angew. Chem. Int. Ed. 2019, 58, 8556-8560; Angew. Chem. 2019, 131,
8644-8648.
[16] DFT calculations were performed by Gaussian program under the level of
M06-2X/def2-TZVPP-SMD(MeOH)//B3LYP-D3(BJ)/def2-SVP. See SI for
computational details.
[17] For related calculation results, please see SI for details.
[18] Chiral acyl chloride 2 is readily prepared through the enzymatic hydrolysis
of the known prochiral diester 5 (referring to Björkling’s work (ref. 11)) and
a following reaction with SOCl2. See SI for experimental details.
[19] The 22R-diastereomer of (–)-bekelic acid methyl ester 17 and other
diastereoisomers were also formed through this reductive coupling
protocol (detected by crude 1H NMR and HRMS). However, we failed to
obtain the pure sample for characterization owing to the contamination of
some unidentified impurities with a similar polarity.
This article is protected by copyright. All rights reserved.