ORGANIC
LETTERS
2006
Vol. 8, No. 1
11-13
Microwave-Enhanced
Palladium-Catalyzed Cross-Coupling
Reactions of Potassium
Vinyltrifluoroborates and Allyl Acetates:
A New Route to 1,4-Pentadienes
George W. Kabalka*,† and Mohammad Al-Masum‡
Departments of Chemistry and Radiology, The UniVersity of Tennessee,
KnoxVille, Tennessee 37996-1600, and Department of Chemistry, Tennessee State
UniVersity, NashVille, Tennessee 37209
Received August 12, 2005
ABSTRACT
A novel and straightforward microwave synthesis of 1,4-pentadienes has been developed involving the cross-coupling of potassium
vinyltrifluoroborates and allyl acetates in the presence of a palladium catalyst.
Reactions involving the coupling of potassium organotri-
fluoroborates with organic electrophiles have received a good
deal of attention in organic chemistry as a result of their
efficiency in creating carbon-carbon bonds.1 Trifluoro-
borates are readily prepared and remarkably stable, yet they
are quite reactive. To our knowledge, of the reported
couplings involving potassium vinyltrifluoroborate and elec-
trophiles, none include straightforward allylation reactions.2
Although examples describing the palladium-catalyzed
coupling of arylboronic acids with allyl halides3 and allyl
acetates4 have been reported, reactions producing 1,4-dienes
have not been explored.5 The 1,4-diene framework constitutes
(2) (a) Kabalka, G. W.; Dong, G.; Venkataiah, B. Org. Lett. 2003, 5,
3803. (b) Molander, G. A.; Bernardi, C. R. J. Org. Chem. 2002, 67, 8424.
(c) Darses, S.; Michaud, G.; Genet, J.-P. Eur. J. Org. Chem. 1999, 1875.
(3) (a) Singh, R.; Viciu, M. S.; Kramareva, N.; Navarro, O.; Nolan, S.
P. Org. Lett. 2005, 7, 1829. (b) Alonso, D. A.; Najera, C.; Pacheco, M. C.
J. Org. Chem. 2002, 67, 5588. (c) Varma, R. S.; Naicker, K. P. Green
Chem. 1999, 2, 247. (d) Moreno-Manas, M.; Pajuelo, F.; Pleixats, R. J.
Org. Chem. 1995, 60, 2396. (e) Miyaura, N.; Suginome, H.; Suzuki, A.
Tetrahedron Lett. 1984, 25, 761.
(4) (a) Ortar, G. Tetrahedron Lett. 2003, 44, 4311. (b) Bouyssi, D.;
Gerusz, V.; Balme, G. Eur. J. Org. Chem. 2002, 2445. (c) Legros, J.-Y.;
Fiaud, J.-C. Tetrahedron Lett. 1990, 31, 7453. (d) Miyaura, N.; Yamada,
K.; Suginome, H.; Suzuki, A. J. Am. Chem. Soc. 1985, 107, 972. (e)
Miyaura, N.; Tanabe, Y.; Suginome, H.; Suzuki, A. J. Organomet. Chem.
1982, 233, C13,
* To whom all corresspondence should be addressed. Ph: (865)974-
3260. Fax: (865)974-2997.
† The University of Tennessee.
‡ Tennessee State University.
(1) (a) Molander, G. A.; Felix, L. A. J. Org. Chem. 2005, 70, 3950. (b)
De, S.; Welker, M. E. Org. Lett. 2005, 7, 2481. (c) Duursma, A.; Boiteau,
J.-G.; Lefort, L.; Boogers, J. A. F.; DeVries, A. H. M.; DeVries, J. G.;
Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2004, 69, 8045. (d) Fang,
G.-H.; Yan, Z.-J.; Deng, M.-Z. Org. Lett. 2004, 6, 357. (e) Pucheault, M.;
Darses, S.; Genet, J.-P. J. Am. Chem. Soc. 2004, 126, 15356. (f) Pucheault,
M.; Darses, S.; Genet, J.-P. Tetrahedron Lett. 2002, 43, 6155.
(5) In one case, a reaction between 1-hexenyl-1,3,2-benzodioxaborole
and cinnamyl acetate was carried out in benzene at refluxing temperatures
for 4 h using 5 mol % Pd(PPh3)4 and a 10% excess of 1-hexenyl-1,3,2-
benzodioxaborole. A 12% yield of the corresponding 1-phenyl-1,4-nonadiene
was reported: Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am.
Chem. Soc. 1985, 107, 972. An additional example was recently reported:
Kayaki, Y.; Koda, T.; Ikariya, T. Eur. J. Org. Chem. 2004, 4989.
10.1021/ol051955v CCC: $33.50
© 2006 American Chemical Society
Published on Web 12/03/2005