Please do not adjust margins
New Journal of Chemistry
Page 6 of 8
DOI: 10.1039/C7NJ03177G
ARTICLE
NJC
obtained DRPSs exhibited a LCST in aqueous solution, which 18 J. R. Kumpfer, and S. J. Rowan, J. Am. Chem. Soc., 2011, 133,
depended strongly on the amount of incorporated Azo or SA 12866–12874.
chromophore. Furthermore, the UV-light induced 19 N. Ishii, J. Mamiya, T. Ikeda, and F. M. Winnik, Chem. Commun.,
isomerization of Azo or SA chromophore in the polymers, had 2011, 47, 1267–1269.
an influence on the LCST. The LCST value was increased after 20 H. Akiyama, and N.Tamaoki, J. Polym. Sci. A, 2004, 42, 5200–
irradiation, in which the difference between irradiated and 5214.
non-irradiated ones was up to 9.8 °C when 5.8 % SA and 30 % 21 G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma, and Z. Liu, Angew.
NIPAs were attached onto the polysiloxane. Thus, in the Chem. Int. Ed., 2016, 128, 9948–9948.
temperature region between the LCST of non-irradiated and 22 A. Izumi, M. Teraguchi, R. Nomura, and T. Masuda, J. Polym. Sci.
irradiated solutions, a light-controlled reversible solubility Polym. Chem., 2015, 38, 1057–1063.
change was observed. In our approach, the NIPAs and 23 F. D. Jochum, and P. Theato, Macromolecules, 2009, 42, 5941–
chromophore were directly attached to the polysiloxane which 5945;
opens the route to allow its combination with other 24 N. Wagner, and P. Theato, Polymer, 2014, 55, 3436–3453.
immobilization chemistry. The approach may yield potential 25 Z. Mahimwalla, K. Yager, J. Mamiya, A. Shishido, A. Priimagi, and
multifunctional and multi-responsive materials.
C. Barrett, Polym. Bull., 2012, 69, 967–1006.
26 M. Alvaro, M. Benitez, D. Das, A. H. Garcia, and E. Peris, Chem.
Mater., 2015, 17, 4958–4964.
Acknowledgements
27 C. Weber, T. Liebig, M. Gensler, L. Pithan, and S. Bommel,
Macromolecules, 2015, 48, 1531–1537.
This work was financially supported by the National Natural
Science Foundation of China (No. 21274080) and Special Fund
for Shandong Independent Innovation and Achievements
Transformation (No. 2014ZZCX01101).
28 M. Baroncini, S. d'Agostino, G. Bergamini, P. Ceroni, A. Comotti,
P. Sozzani, I. Bassanetti, F. Grepioni, T. M. Hernandez, S. Silvi, M.
Venturi, and A. Credi, Nature Chem., 2015, 7, 634–640.
29 K. Ogawa, and J. Harada, J. Mol. Struct., 2003, 647, 211–216.
30 M. Guillaume, and B. Champagne, J. Phys. Chem. A, 2007, 111,
9914–9923.
References
31 L. Gutiérrezarzaluz, F. Cortésguzmán, T. Rocharinza, and J. Peón,
Phys. Chem. Chem. Phys., 2015, 17, 31608–31612.
32 S. Guo, K. Matsukawa, T. Miyata, T. Okubo, K. Kuroda, and A.
Shimojima, J. Am. Chem. Soc., 2015, 137, 15434−15440.
33 M. Wang, S. M. Sayed, L. X. Guo, B. P. Lin, X. Q. Zhang, Y. Sun,
and H. Yang, Macromolecules, 2016, 49, 663−671.
34 O. Kulikovska, L. M. Goldenberg, and J. Stumpe, Chem. Mater.,
2008, 20, 3528–3534.
1 I. Yilgör, and J. E. Mcgrath, Adv. Polym. Sci., 1988, 86, 1–86.
2 F. Abbasi, H. Mirzadeh, and A. A. Katbab, Polym. Int., 2001, 50,
1279–1287.
3 J. B. Lin, B. C. Isenberg, Y. Shen, K. Schorsch, O. V. Sazonova, and J.
Y. Wong, Colloids Surf. B, 2012, 99, 108–115.
4 A. Car, P. Baumann, J. T. Duskey, M. Chami, N. Bruns, and W.
Meier, Biomacromolecules, 2014, 15, 3235–3245.
5 J. Tobis, Y. Thomann, and J. C. Tiller, Polymer, 2010, 51, 35–45.
6 A. D. R. Hodorog, and C. Ibanescu. Open Chem., 2013, 10, 1338–
1348.
35 A. S. Fawcett, T. C. Hughes, L. Z. Velazquez, and M. A. Brook,
Macromolecules, 2015, 48, 6499−6507.
36 A. S. Fawcett, and M. A. Brook, Macromolecules, 2014, 47,
1656−1663.
7 S. Li, and S. Feng, RSC Adv., 2016, 6, 99414–99421.
8 S. Li, L. Feng, and S. Feng, New J. Chem., 2017, 41, 1997–2003.
9 Z. Y. Li, Y. Zhang, C. W. Zhang, L. J. Chen, C. Wang, H. Tan, Y. Yu,
X. Li, and H. B. Yang, J. Am. Chem. Soc., 2014, 136, 8577–8589.
10 Z. Cao, X. Zhou, and G. Wang, ACS Appl. Mater. Interface, 2016, 8,
28888–28896.
37 S. Pey, B. Kolli, S. P. Mishra, and A. B. Samui, J. Polym. Sci. Polym.
Chem., 2012, 50, 1205−1215.
38 H. Yang, L. Li, F. Li, K. Jiang, J. Shang, G. Lai, and L. W. Xu, Org.
Lett., 2011, 13, 6508−6511.
39 L. W. Xu, and C. G. Xia, Synthesis, 2004, 13, 2191−2195.
40 H. Chen, L. Xu, X. Ma, and H. Tian, Polym. Chem., 2016, 7, 3989-
3992.
11 X. Liu, D. Hu, Z. Jiang, J. Zhuang, Y. Xu, X. Guo, and S.
Thayumanavan, Macromolecules, 2016, 49, 6186–6192.
12 Q. Chen, X. Yu, Z. Pei, Y. Yang, Y. Wei, and Y. Ji, Chem. Sci., 2017,
8, 724–733.
41 H. Chen,X Ma,S Wu,and H Tian, Angew. Chem. Int. Ed.,
2014, 53(51), 14373-14376.
13 C. G. Schäfer, M. Gallei, J. T. Zahn, J. Engelhardt, G. P. Hellmann,
and M. Rehahn, Chem. Mater., 2013, 25, 2309−2318.
14 Y. J. Kim, M. Ebara, and T. Aoyagi, Angew. Chem. Int. Ed., 2012,
51, 10537–10541.
42 M. E. Prime, O. A. Andersen, J. J. Barker, M. A. Brooks, and R. K. Y,
Cheng, J. Med. Chem., 2012, 55, 1021–1046.
43 Y. Wang, Q. Zhao, L. Zang, C. Liang, and S. Jiang, Dyes Pigments,
2015, 123,166-175.
15 K. Shi, Z. Liu, Y. Y. Wei, W. Wang, X. J. Ju, R. Xie, and L. Y. Chu,
ACS Appl. Mater. Interface, 2015, 7, 27289−27298.
16 E. Sokolovskaya, S. Rahmani, A. C. Misra, S. Bräse, and J. Lahann,
ACS Appl. Mater. Interface, 2015, 7, 9744−9751.
44 H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem. Int. Ed.,
2001, 40, 2004-2021.
45 B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long, Prog.
Polym. Sci., 2006, 31, 487–531.
17 E. Blasco, B. V. K. J. Schmidt, C. Barner-Kowollik, M. Pinol, and L.
Oriol, Polym. Chem., 2013, 4, 4506-4514.
46 G. Bosica, and A. J. Debono, Tetrahedron, 2014, 70, 6607-6612.
47 C. Lin, Z. Zhong, M. C. Lok, X. Jiang, W. E. Hennink, J. Feijen, and J.
F. J. Engbersen, J. Control. Release, 2007, 123, 67–75.
6 |New J. Chem., 2017, 00, 1-7
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins