M. R. M. Andreae, A. P. Davis / Tetrahedron: Asymmetry 16 (2005) 2487–2492
Table 3. Loadings determined for polymer bound peptide catalysts
2491
2 ml vial, a portion of this solution (120 ll 7.60 mg 4-
nitrobenzaldehyde 11, 0.05 mmol) was mixed with
27 mg (13 mol %) of H-Pro-Ser-NH-TG and an appro-
priate volume of co-solvent to give the media listed in
Table 2 (entries 1–4). The mixture was agitated at room
temperature using a blood tube rotator for 24 h.
Samples were withdrawn and analysed by HPLC as
described above.
Peptide
Loading (mmol gꢀ1
)
TG-Ser-Pro
TG-D-Ser-Pro
TG-Thr-Pro
TG-D-Thr-Pro
TG-Ala-Pro
TG-Cys-Pro
0.24
0.25
0.30
0.28
0.20
0.25
0.17
0.35
0.34
0.43
0.36
TG-Pro
TG-Phe-Ser-Pro
TG-Phe-D-Ser-Pro
TG-Trp-Ser-Pro
TG-Tyr-Ser-Pro
Acknowledgements
This research was supported by the EPSRC (GR/
R42757/01).
4.4. Estimation of peptide loading
References
The loading of the peptides on the resin was determined
by UV spectroscopy of the soluble by-product from the
final Fmoc deprotection step. 9-Fluorenylmethoxycar-
bonyl-amino acid resin (ꢁ3 mg, weighed accurately)
was placed in a 5 ml sample tube and freshly prepared
20% piperidine in N,N,-dimethylformamide added. The
resin was agitated for 20–30 min. Three millilitres of
the solution was transferred into a UV cell and the
absorbance at 290 nm was read. The loading on the
resin in mmol gꢀ1 was obtained from the expression
(Abssample ꢀ Absref)/(1.65 · mg of resin).22 Results are
given in Table 3.
1. Groger, H.; Wilken, J. Angew. Chem., Int. Ed. 2001, 40,
529; List, B. Tetrahedron 2002, 58, 5573; List, B. Acc.
Chem. Res. 2004, 37, 548; Notz, W.; Tanaka, F.; Barbas,
C. F. Acc. Chem. Res. 2004, 37, 580.
2. Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed.
1971, 10, 496; Hajos, Z. G.; Parrish, D. R. J. Org. Chem.
1974, 39, 1615.
3. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc.
2000, 122, 2395.
4. (a) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386;
(b) Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C. F. J. Am.
Chem. Soc. 2001, 123, 5260; (c) Northrup, A. B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
6798; (d) Pidathala, C.; Hoang, L.; Vignola, N.; List, B.
Angew. Chem., Int. Ed. 2003, 42, 2785; (e) Torii, H.;
Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H.
Angew. Chem., Int. Ed. 2004, 43, 1983; (f) Northrup, A. B.;
MacMillan, D. W. C. Science 2004, 305, 1752; (g) Casas,
J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Cordova, A.
Angew. Chem., Int. Ed. 2005, 44, 1343.
5. List, B. J. Am. Chem. Soc. 2000, 122, 9336; List, B.;
Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem.
Soc. 2002, 124, 827; Cordova, A.; Notz, W.; Zhong, G. F.;
Betancort, J. M.; Barbas, C. F. J. Am. Chem. Soc. 2002,
124, 1842; Ibrahem, I.; Casas, J.; Cordova, A. Angew.
Chem., Int. Ed. 2004, 43, 6528.
6. Melchiorre, P.; Jorgensen, K. A. J. Org. Chem. 2003, 68,
4151; Andrey, O.; Alexakis, A.; Bernardinelli, G. Org.
Lett. 2003, 5, 2559; Halland, N.; Aburel, P. S.; Jorgensen,
K. A. Angew. Chem., Int. Ed. 2003, 42, 661; Wang, W.;
Wang, J.; Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369;
Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am.
Chem. Soc. 2004, 126, 9558; Cobb, A. J. A.; Longbottom,
D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004,
1808.
7. Bogevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang,
W.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2002, 41,
1790; List, B. J. Am. Chem. Soc. 2002, 124, 5656; Merino,
P.; Tejero, T. Angew. Chem., Int. Ed. 2004, 43, 2995;
Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.;
Jorgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790;
Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2004, 126, 4108.
4.5. General procedure for aldol reactions between
4-nitrobenzaldehyde 11 and acetone (no added solvent)
In a 2 ml vial, 4-nitrobenzaldehyde 11 (7.60 mg,
0.05 mmol) and polymer-supported catalyst (13 mol %)
were mixed with 600 ll of acetone (470 mg, 8.2 mmol,
160 equiv). For experiments at room temperature, the
mixture was agitated using a blood tube rotator. For
reactions at reduced temperature, the vials were sus-
pended in a cold bath and the mixture stirred with a
magnetic follower. At the end of the experiment,
samples (30 ll) were withdrawn and diluted with 1 ml
isopropanol/n-hexane (1:9). Conversions and enantio-
meric excesses were determined by HPLC [Daicel
Chiralpak-AS-H, isopropanol/n-hexane (1:9), 1.3 ml/
min]. Quantification was performed using naphthalene
as the internal standard. Retention times (tR, min):
4-nitrobenzaldehyde 11, 22.0; (R)-4-hydroxy-4-(4-nitro-
phenyl)butan-2-one 12, 25.3; (S)-4-hydroxy-4-(4-nitro-
phenyl) butan-2-one ent-12, 32.3. In some cases, the
by-product (E)-4(40-nitrophenyl)-2-oxo-3-butene was
detected at tR = 37.5. Assignment of the absolute config-
uration was made by comparison with the literature
data.15 Each experiment was repeated, giving self-
consistent yields and enantiomeric excesses.
4.6. General procedure for aldol reactions between
4-nitrobenzaldehyde 11 and acetone, catalysed by
H-Pro-Ser-NH-TG, in the presence of co-solvents
8. Hartikka, A.; Arvidsson, P. I. Tetrahedron: Asymmetry
2004, 15, 1831.
9. Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004,
346, 1141.
A stock solution of 4-nitrobenzaldehyde 11 (63 mg,
0.42 mmol) in acetone (1.00 ml) was prepared. In a
10. Nakadai, M.; Saito, S.; Yamamoto, H. Tetrahedron 2002,
58, 8167.