Tunable and Bifunctional Organocatalysts
SCHEME 1. Highly Enantioselective Direct Aldol Reaction
Catalyzed by L-Proline or Its Derivatives and Analogues
FIGURE 1. Tunable and bifunctional organocatalysts and Gong’s
amino alcohol catalysts.
acetone, and some enolizable aldehydes are excellent nucleo-
philes, a variety of other donors, e.g., acetophenone, 3-pen-
tanone, and cyclic ketones did not yield a significant amount
of the desired aldol products with satisfactory selectivity.12a,13a
Recently, the highly diastereo- and enantioselective direct aldol
reaction between heterocyclic ketones and aldehydes was
reported by Pihko’s group, although the process was somewhat
sluggish.16 Recent studies by the groups of Barbas,17a Hayashi,17b
and Co´rdova17c revealed the enantioselective direct aldol reac-
tions of cyclohexanone in water, which open a new way for
the development of asymmetric organocatalysis in water.
However, the search for an efficient organocatalyst that shows
high diastereo- and enantioselectivities for a broad range of
cyclic ketone donors is still a problem waiting to be solved.
In our continuing efforts to develop readily tunable organo-
catalysts of broad utility for chemical transformations,15g we
combined the proline catalysis concept with hydrogen-bond
activation and designed a series of tunable bifunctional orga-
nocatalysts (1) (Figure 1). Initial studies revealed that catalyst
1b had the highest catalytic activity for the aldol reaction
between cyclohexanone and aldehydes. More importantly, we
demonstrated that an elegant alignment of the steric and
development of a direct catalytic asymmetric aldol reaction with
aldehydes and unmodified ketones is a noteworthy endeavor.7
A breakthrough in this strategy was realized by Shibasaki’s
success in developing heterobimetallic multifunctional catalyzed
direct asymmetric aldol reaction, although the enantioselectivi-
ties are currently modest.4a,8 Recently, Trost4b,9 and Evans10 and
co-workers demonstrated the highly enantioselective direct aldol
reaction catalyzed by zinc and nickel complexes. Almost three
decades after the first report of the intramolecular aldol reaction
catalyzed by L-proline,11 Barbas12a and List12b,c and co-workers
described the L-proline catalyzed intermolecular direct aldol
reaction using unmodified ketones as donors. Since then, there
has much research activity in this area, most of which has been
directed toward developing novel catalysts as well as extending
the substrate scope. Impressive results were obtained for various
kinds of aldehydes and R-ketoesters as acceptors when L-
proline12,13 or its derivatives and analogues14,15 were used
(Scheme 1).
Despite the substantial variety of aldol acceptors, the range
of donors has remained narrow. Whereas acetone, hydroxy
(7) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley
& Sons: New York, 1994. (b) Sawamura, M.; Ito, Y. In Catalytic
Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; pp 367-
388.
(8) Yoshikawa, N.; Yamada, Y. M. A.; Das, J.; Sasai, H.; Shibasaki, M.
J. Am. Chem. Soc. 1999, 121, 4168.
(9) Trost, B. M.; Ito, H.; Siloff, E. R. J. Am. Chem. Soc. 2001, 123,
3367.
(10) Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003,
125, 8706.
(11) (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl.
1971, 10, 496. (b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39,
1615.
(12) (a) Sakthievel, K.; Notz, W.; Bui, T.; Barbas, C. F., III. J. Am. Chem.
Soc. 2001, 123, 5260. (b) List, B.; Lerner, R. A.; Barbas, C. F., III. J. Am.
Chem. Soc. 2000, 122, 2395. (c) Notz, W.; List, B. J. Am. Chem. Soc. 2000,
122, 7386.
(13) For selected reviews, see: (a) List, B. Synlett 2001, 1675. (b) List,
B. Tetrahedron 2002, 58, 5573. (c) Alcaide, B.; Almendros, P. Angew.
Chem., Int. Ed. 2003, 42, 858. (d) List, B. Acc. Chem. Res. 2004, 37, 548.
(e) Notz, W.; Tanaka, F.; Barbas, C. F., III. Acc. Chem. Res. 2004, 37,
580. (f) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. For selected
examples, see: (g) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2002, 124, 6798. (h) Co´rdova, A.; Notz, W.; Barbas, C. F., III. J.
Org. Chem. 2002, 67, 301. (i) Bøgevig, A.; Kumaragurubaran, N.; Jørgensen,
K. A. Chem. Commun. 2002, 620. (j) Pidathala, C.; Hoang, L.; Vignola,
N.; List, B. Angew. Chem., Int. Ed. 2003, 42, 2785. (k) Northrup, A. B.;
Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem., Int. Ed.
2004, 43, 2152. (l) Northrup, A. B.; MacMillan, D. W. C. Science 2004,
305, 1752. (m) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Co´rdova,
A. Angew. Chem., Int. Ed. 2005, 44, 1343. (n) Samanta, S.; Zhao, C.-G. J.
Am. Chem. Soc. 2006, 128, 7442. (o) Suri, J. T.; Mitsumori, S.; Albertshofer,
K.; Tanaka, F.; Barbas, C. F., III. J. Org. Chem. 2006, 71, 3822.
(14) (a) Saito, S.; Nakadai, M.; Yamamoto, H. Synlett 2001, 1245. (b)
Nakadai, M.; Saito, S.; Yamamoto, H. Tetrahedron 2002, 58, 8167. (c)
Hartikaa, A.; Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831.
(d) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew.
Chem., Int. Ed. 2004, 43, 1983. For review, see: (e) Saito, S.; Yamamoto,
H. Acc. Chem. Res. 2004, 37, 570.
(15) (a) Martin, H. J.; List, B. Synlett 2003, 1901. (b) Kofoed, J.; Nielsen,
J.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 2445. (c) Tang, Z.;
Jiang, F.; Yu, L.-T.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. J.
Am. Chem. Soc. 2003, 125, 5262. (d) Tang, Z.; Jiang, F.; Cui, X.; Gong,
L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5755. (e) Tang, Z.; Yang, Z.-H.; Chen, C.-H.; Cun, L.-F.; Mi,
A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc. 2005, 127, 9285. (f)
Tang, Z.; Cun, L.-F.; Cui, X.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org.
Lett. 2006, 8, 1263. (g) Chen, J.-R.; Lu, H.-H.; Li, X.-Y.; Cheng, L.; Wan,
J.; Xiao, W.-J. Org. Lett. 2005, 7, 4543. (h) Berkessel, A.; Koch, B.; Lex,
J. AdV. Synth. Catal. 2004, 346, 1141. (i) Cobb, A. J. A.; Shaw, D. M.;
Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3,
84. (j) Samanta, S.; Liu, J.; Dodda, R.; Zhao, C.-G. Org. Lett. 2005, 7,
5321. (k) Ibrahem, I.; Co´rdova, A. Tetrahedron Lett. 2005, 46, 3363. (l)
Samanta, S.; Zhao, C.-G. Tetrahedron Lett. 2006, 47, 3383. (m) Jiang, M.;
Zhu, S.-F.; Yang, Y.; Gong, L.-Z.; Zhou, X.-H.; Zhou, Q.-L. Tetrahedron:
Asymmetry 2006, 17, 384. (n) Grondal, C.; Enders, D. Tetrahedron 2006,
62, 329. (o) Li, D.-P.; Guo, Y.-C.; Ding, Y.; Xiao, W.-J. Chem. Commun.
2006, 799.
(16) Pihko, P. M.; Laurikainen, K. M.; Usano, A.; Nyberg, A. I.; Kaavi,
J. A. Tetrahedron 2006, 62, 317.
(17) (a) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka,
F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 734. (b) Hayashi, Y.;
Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. Angew.
Chem., Int. Ed. 2006, 45, 958. (c) Dziedzic, P.; Zou, W.-B.; Ha´fren, J.;
Co´rdova, A. Org. Biomol. Chem. 2006, 4, 38.
J. Org. Chem, Vol. 71, No. 21, 2006 8199