JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
10 C. Pugh, A. Singh, R. Samuel, K. M. Bernal Ramos, Macro-
molecules 2010, 43, 5222–5232.
TABLE 5 Fitting Parameters for Using eq 1 fGðtÞ5a1b ½exp
d
ð2t=cÞ ꢂg Used to Fit the Data in Figure 11
11 K. Chaicharoen, M. J. Polce, A. Singh, C. Pugh, C.
Wesdemiotis, Anal. Bioanal. Chem. 2008, 392, 595–607.
25 8C
50 8C
75 8
100 8C
12 W. Jakubowski, K. Matyjaszewski, Macromolecules 2005, 38,
4139–4146.
a (Pa)
b (Pa)
d
1,917
943
2,179
767
2,302
420
2,552
275
€
13 A. H. E. Muller, D. Yan, M. Wulkow, Macromolecules 1997,
30, 7015–7023.
0.950
1.163
0.950
0.9538
0.950
0.8896
0.872
0.8541
€
14 D. Yan, A. H. E. Muller, K. Matyjaszewski, Macromolecules
c (s)
1997, 30, 7024–7033.
15 T. M. Don, M. L. Huang, A. C. Chiu, K. H. Kuo, W. Y. Chi,
Mater. Chem. Phys. 2008, 107, 266–273.
crosslinking. To form a gel rather than small plastic particles,
the rate of crosslinking must be decreased, which is more
readily achieved in one pot in solution at high inimer conver-
sions during the synthesis of hyperbranched polymers and
copolymers. The resulting crosslinked polymers are hydro-
phobic due to the n-nonyl ester substituents and act as orga-
nogels that swell in THF. The swelling ratio increases as the
number of crosslinks in the gel decreases, which was
16 P. R. Ninawe, S. J. Parulekar, Ind. Eng. Chem. Res. 2012, 51,
1741–1755.
17 C. M. Sahagun, S. E. Morgan, ACS Appl. Mater. Interfaces
2012, 4, 564–572.
18 P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133–3159.
19 D. Dasgupta, J. M. Guenet, Macromol. Chem. Phys. 2012,
214, 1885–1892.
20 Y. Wu, T. Zhang, Z. Xu, Q. Guo, J. Mater. Chem. A 2015, 3,
1906–1909.
achieved by copolymerization with
a standard acrylate
monomer (n-nonyl acrylate). Without solvent, the dry net-
work behaves as a viscoelastic solid with a glass transition
at 250 8C. The linear temperature dependence of Ginf con-
firms that the dry networks are covalently crosslinked.
21 R. Kumar, O. P. Katare, AAPS Pharm. Sci. Tech. 2005, 6,
E298–E310.
22 P. Rajamalli, E. Prasad, Org. Lett. 2011, 13, 3714–3717.
23 X. Cao, T. Zhang, A. Gao, K. Li, Q. Cheng, L. Song, M.
Zhang, Org. Biomol. Chem. 2014, 12, 6399–6405.
ACKNOWLEDGMENTS
24 Y. Liu, A. Lloyd, G. Guzman, K. A. Cavicchi, Macromolecules
2011, 44, 8622–8630.
This work was supported by the National Science Foundation
through CHE-1112326 and CMMI-1300212. The authors thank
Jing Wang and Professor Stephen Z. D. Cheng for the X-ray scat-
tering analyses.
25 S. Yurteri, I. Cianga, Y. Yagci, Macromol. Chem. Phys. 2003,
204, 1771–1783.
26 T. Sarbu, K. Y. Lin, J. Ell, D. J. Siegwart, J. Spanswick, K.
Matyjaszewski, Macromolecules 2004, 37, 3120–3127.
27 T. Sarbu, K. Y. Lin, J. Spanswick, R. R. Gil, D. J. Siegwart, K.
Matyjaszewski, Macromolecules 2004, 37, 9694–9700.
REFERENCES AND NOTES
28 C. F. Huang, Y. Ohta, A. Yokoyama, T. Yokozawa, Macromo-
lecules 2011, 44, 4140–4148.
1 J. S. Wang, K. Matyjaszewski, Macromolecules 1995, 28,
7572–7573.
29 M. N. C. Balili, T. Pintauer, Inorg. Chem. 2010, 49, 5642–
5649.
2 T. E. Patten, J. Xia, T. Abernathy, K. Matyjaszewski, Science
1996, 272, 866–868.
30 R. N. Keller, H. D. Wycoff, Inorg. Synth. 1946, 2, 1–4.
3 M. J. Ziegler, K. Matyjaszewski, Macromolecules 2001, 34,
31 J. F. Xu, W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia, X.
Q. Xin, J. Solid State Chem. 1999, 147, 516–519.
415–424.
4 J. M. J. Frechet, M. Henmi, I. Gitsov, S. Aoshima, M. R.
Leduc, R. B. Grubbs, Science 1995, 269, 1080–1083.
32 M. Salavati-Niasari, F. Davar, Mater. Lett. 2009, 63, 441–443.
33 A. R. Katritzky, S. Sild, V. Lobanov, M. Karelson, J. Chem.
Inf. Comput. Sci. 1998, 38, 300–304.
5 K. Matyjaszewski, S. G. Gaynor, A. Kulfan, M. Podwika, Mac-
romolecules 1997, 30, 5192–5194.
34 M. Rubinstein, R. Colby, Polymer Physics, 1st ed.; Oxford
University Press; New York, 2003; Chapter 7, p 293.
6 K. Matyjaszewski, S. G. Gaynor, Macromolecules 1997, 30,
7042–7049; (b) K. Matyjaszewski, J. Pyun, S. G. Gaynor, Mac-
romol. Rapid Commun. 1998, 19, 665–670.
35 A. V. Tobolsky, D. W. Carlson, N. Indictor, J. Polym. Sci.
1961, 54, 175–192.
7 C. Gao, D. Yan, Prog. Polym. Sci. 2004, 29, 183–275.
36 G. Williams, D. C. Watts, Trans. Faraday Soc., 1970, 66, 80–
85.
8 C. Pugh, A. Singh, WO2008045299-A1, 2008; (b) C. Pugh, A.
Singh, U.S. Patent 8,524,942, 2013.
37 M. Rubinstein, R. Colby, Polymer Physics, 1st ed.; Oxford
University Press; New York, 2003; Chapter 9, p 362.
9 C. Pugh, B. Raveendra, A. Singh, R. Samuel, G. Garcia, Syn-
lett. 2010, 13, 1947–1950.
2410
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2015, 53, 2399–2410