Synthesis and Characterization of All Four
Diastereomers of 3,4-Dichloro-2-pentanol, Motifs
Relevant to the Chlorosulfolipids
Jacob S. Kanady, John D. Nguyen, Joseph W. Ziller, and
Christopher D. Vanderwal*
1102 Natural Sciences II, Department of Chemistry,
UniVersity of California, IrVine, California, 92697-2025
cdV@uci.edu
ReceiVed October 27, 2008
FIGURE 1. Unnamed chlorosulfolipids isolated from Adriatic mussels
(1-3) and from freshwater algae (4) and algae-derived protein kinase
inhibitor malhamensilipin A (5).
rination of allylic alcohol derivatives to afford preferentially
the syn,syn hydroxydichloride stereorelationship (6 f 7, eq
1).4 Although the stereochemistry shown in Figure 1 for 1-3
had been elucidated using the powerful J-based configura-
tional analysis of Murata,3f,g,5 the accuracy of this method
has not yet been validated in the context of polychlorinated
compounds; therefore, we rigorously assigned the relative
stereochemistry of our hydroxydichloride products by chemi-
cal manipulations that included epoxide- and pyran-forming
schemes. To further solidify these and future stereochemical
assignments, we describe in this Note the synthesis, spec-
troscopic characterization, and unambiguous structure de-
termination by X-ray crystallography of the four diastereo-
meric hydroxychloride stereotriads on a minimal five-carbon
chain. We hope that the data provided might enable stereo-
chemical correlations by those who pursue the synthesis of
the chlorosulfolipids. These data should certainly enable
facile determination of the stereochemical outcomes of any
allylic alcohol dichlorination reactions that are developed
from this point on and could prove useful in the elucidation
of the stereochemistry of chlorosulfolipids such as 4 and 5.
All four diastereomers of 3,4-dichloro-2-pentanol were
synthesized by anti-dichlorination of the precursor allylic
alcohols; their stereochemistry was elucidated by X-ray
crystallographic analysis of tosylate derivatives. Complete
NMR data is provided in the hope that this information will
facilitate structural elucidation and synthesis studies on the
chlorosulfolipid family of natural products, such as malha-
mensilipin A.
Databases of spectral information can be powerful tools
for structural determination. For example, the Kishi group’s
NMR database for polyketide natural products1 was devel-
oped by the independent synthesis of stereochemical motifs
common to this important group and compilation of the NMR
data for each. The advent of this data collection has enabled
simplified protocols for the structure determination of newly
discovered polyketides and synthetic fragments thereof.2
The chlorosulfolipids (1-5, Figure 1) are an unusual class
of polychlorinated alkanes that represent particularly daunting
challenges for chemical synthesis.3 The obvious dearth of
methodology for the stereocontrolled introduction of multiple
chlorine atoms onto acyclic scaffolds poses a significant
problem; however, the less obvious problem of stereochem-
ical elucidation of these natural products and synthetic
intermediates presents an equally important challenge. As
part of our program targeting the chlorosulfolipids, we
recently introduced a method for the stereoselective dichlo-
(3) (a) Elovson, J.; Vagelos, P. R. Proc. Natl. Acad. Sci. U.S.A. 1969, 62,
957–963. (b) Haines, T. H.; Pousada, M.; Stern, B.; Mayers, G. L. Biochem. J.
1969, 113, 565–566. (c) Elovson, J.; Vagelos, P. R. Biochemistry 1970, 9, 3110–
3126. (d) Haines, T. H. In Lipids and Biomembranes of Eukaryotic Microorgan-
isms; Erwin, J. A., Ed.; Academic Press: New York; 1973; pp 197-232. (e)
Haines, T. H. Annu. ReV. Microbiol. 1973, 27, 403–412. (f) Chen, J. L.; Proteau,
P. J.; Roberts, M. A.; Gerwick, W. H.; Slate, D. L.; Lee, R. H. J. Nat. Prod.
1994, 57, 524–527. (g) Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S.;
Di Rosa, M.; Ianaro, A.; Poletti, R. J. Org. Chem. 2001, 66, 578–582. (h)
Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Di Rosa, M.; Ianaro,
A.; Poletti, R. J. Am. Chem. Soc. 2002, 124, 13114–13120. (i) Ciminiello, P.;
Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S. Pure Appl. Chem. 2003,
75, 325–336. (j) Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.;
Magno, S.; Di Meglio, P.; Ianaro, A.; Poletti, R. Tetrahedron 2004, 60, 7093–
7098. (k) Ciminiello, P.; Fattorusso, E. Eur. J. Org. Chem. 2004, 2533–2551.
(4) Shibuya, G. M.; Kanady, J. S.; Vanderwal, C. D. J. Am. Chem. Soc. 2008,
130, 12514–12518.
(1) (a) Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177–
2180. (b) Lee, J.; Kobayashi, Y.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2181–
2184. (c) Kishi, Y. Tetrahedron 2002, 58, 6239–6258.
(2) For a recent review that emphasizes the NMR Universal Database, see:
Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R. Chem. ReV. 2007,
107, 3744–3779.
(5) Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K.
J. Org. Chem. 1999, 64, 866–876.
10.1021/jo802390e CCC: $40.75
Published on Web 01/22/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 2175–2178 2175