Acetylene-Substituted Phosphane Oxides
FULL PAPER
gel, ethyl acetate/hexane, 1:1 to pure ethyl acetate) afforded pure
trans isomer 18 (120 mg, 15%) followed by the cis isomer (80 mg,
10%) contaminated with three minor products as UV-sensitive
white solids. Crystals of the trans isomer suitable for X-ray diffrac-
tion were obtained by crystallization from ethyl acetate/hexane.
[1]
a) N. N. P. Moonen, R. Gist, C. Boudon, J.-P. Gisselbrecht, P.
Seiler, T. Kawai, A. Kishioka, M. Gross, M. Irie, F. Diederich,
Org. Biomol. Chem. 2003, 1, 2032–2034; b) T. Michinobu, J. C.
May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M.
Gross, I. Biaggio, F. Diederich, Chem. Commun. 2005, 737–
739; c) N. N. P. Moonen, C. Boudon, J.-P. Gisselbrecht, P. Se-
iler, M. Gross, F. Diederich, Angew. Chem. Int. Ed. 2002, 41,
3044–3047.
18 (trans isomer): M.p 325 °C (decomp.). 31P{1H} NMR
(101 MHz, CDCl3, 27 °C): δ = –20.2 (s) ppm. 1H NMR (250 MHz,
3
CDCl3, 27 °C): δ = 1.42 (d, JH,H = 6.8 Hz, 24 H, CH3), 3.83–3.97
3
3
[2] a) R. E. Martin, F. Diederich, Angew. Chem. Int. Ed. 1999, 38,
1350–1377; Angew. Chem. 1999, 111, 1440–1469; b) F. Dieder-
ich, L. Gobbi, Top. Curr. Chem. 1999, 201, 43–79; c) M. B.
Nielsen, F. Diederich, Synlett 2002, 544–552.
[3] K. B. Dillon, F. Mathey, J. F. Nixon, Phosphorus: The Carbon
Copy, Wiley, Chichester, 1998.
[4] a) M. Hissler, P. W. Dyer, R. Réau, Top. Curr. Chem. 2005,
250, 127–163; b) M. Hissler, C. Lescop, R. Réau, J. Organomet.
Chem. 2005, 690, 2482–2487; c) C. Hay, M. Hissler, C. Fisch-
meister, J. Rault-Berthelot, L. Toupet, L. Nyulászi, R. Réau,
Chem. Eur. J. 2001, 7, 4222–4236.
[5] a) L. T. Scott, M. Unno, J. Am. Chem. Soc. 1990, 112, 7823–
7825; b) L. T. Scott, M. J. M. Cooney, Modern Acetylene
Chemistry (Eds.: P. J. Stang, F. Diederich), VCH, Weinheim,
1995, ch. 9, pp. 321–351.
(m, JP,H = 21.5 Hz, JH,H = 6.8 Hz, 4 H, N–CH), 7.38–7.43 (m, 4
H, Ar), 7.50–7.55 (m, 4 H, Ar) ppm. 13C{1H} NMR (63 MHz,
CDCl3, 27 °C): δ = 22.9 (d, JP,C = 1.9 Hz, CH3), 47.2 (d, JP,C
7.0 Hz, N–CH), 90.6 (d, JP,C = 229.8 Hz, P–Cϵ), 95.9 (d, JP,C
42.8 Hz, P–CϵC), 124.4 (dd, JP,C = 4.9 Hz, JP,C = 2.2 Hz, i-Ph),
3
2
=
=
1
2
3
4
4
130.5 (s, Ph), 133.0 (d, JP,C = 2.0 Hz, Ph) ppm. HRMS: calcd. for
C32H36N2O2P2 542.2252; found 542.2259. C32H36N2O2P2: calcd. C
70.84, H 6.69, N 5.16; found C 70.75, H 6.54, N 5.15.
18 (cis isomer): 31P NMR (101 MHz, CDCl3, 27 °C): δ = –20.4
1
(s) ppm. H NMR (250 MHz, CDCl3, 27 °C): δ = 1.42 (m, 24 H,
CH3), 3.75–3.96 (m, 4 H, N–CH), 7.30–7.46 (m, 4 H, Ar), 7.48–
7.64 (m, 4 H, Ar) ppm.
Crystal Structure Data for 18: C32H36N2O2P2 + disordered solvent,
Mw = 542.57*, colorless needle, 0.27ϫ0.09ϫ0.03 mm3, mono-
[6] G. Märkl, T. Zollitsch, P. Kreitmeier, M. Prinzhorn, S. Rei-
thinger, E. Eibler, Chem. Eur. J. 2000, 6, 3806–3820.
[7]
clinic, P2/c (no. 13),
a = 20.6225(3), b = 7.5377(1), c =
a) R. J. P. Corriu, C. Guérin, B. J. L. Henner, A. Jolivet, J. Or-
ganomet. Chem. 1997, 530, 39–48; b) Y.-C. Chang, J.-C. Lee,
F.-E. Hong, Organometallics 2005, 24, 5686–5695; c) S. B. Bu-
shuk, F. H. Carre, D. M. H. Guy, W. E. Douglas, Y. A. Kalvin-
kovskya, L. G. Klapshina, A. N. Rubinov, A. P. Stupak, B. A.
Bushuk, Polyhedron 2004, 23, 2615–2623.
a) S. Rumthao, O. Lee, Q. Sheng, W. Fu, D. C. Mulhearn, D.
Crich, A. D. Mesecar, M. E. Johnson, Bioorg. Med. Chem.
Lett. 2004, 14, 5165–5170; b) V. Vicente, A. Fruchier, M.
Taillefer, C. Combes-Chamalet, I. J. Scowen, F. Plenat, H.-J.
Cristau, New J. Chem. 2004, 28, 418–424.
R. B. King, N. D. Sadanani, J. Org. Chem. 1985, 50, 1719–
1722.
K. Toyota, M. Shibata, M. Yoshifuji, Bull. Chem. Soc. Jpn.
1995, 68, 2633–2638.
a) T. Koizumi, P. Haake, J. Am. Chem. Soc. 1973, 95, 8073–
8079; b) E. I. Matrosov, E. E. Kryuchkov, E. E. Nifantyev,
A. G. Kozachenko, M. I. Kabachnik, Phosphorus Sulfur 1982,
13, 69–78; c) M. J. P. Harger, P. A. Shimmin, Tetrahedron 1992,
48, 7539–7550; d) R. P. Polniaszek, J. Org. Chem. 1992, 57,
5189–5195.
24.2849(5) Å, β = 94.7219(12)°, V = 3762.18(11) Å3, Z = 4, Dx =
0.958 gcm–3 *, µ = 0.14 mm–1 *. (Derived parameters marked with
an asterisk * do not contain the contribution of the disordered
solvent molecules.) 35739 Reflections were measured on a Nonius-
Kappa CCD diffractometer with rotating anode (graphite mono-
[8]
chromator, λ = 0.71073 Å) up to a resolution of (sin θ/λ)max
=
0.56 Å–1 at a temperature of 150 K. The reflections were corrected
for absorption and scaled on the basis of multiple measured reflec-
tions with the SADABS program [25] (0.83–1.00 correction range).
5597 Reflections were unique (Rint = 0.0837). The structure was
solved by direct methods[26] and refined with SHELXL-97 pro-
gram[27] against F2 for all reflections. The crystal structure contains
large voids (1013 Å3 per unit cell) filled with disordered solvent
molecules. Their contribution to the structure factors was secured
by back-Fourier transformation using the SQUEEZE routine of
the PLATON program,[28] accounting for 180 electrons per unit
cell. Non-hydrogen atoms were refined with anisotropic displace-
ment parameters. All hydrogen atoms were introduced in geometri-
cally optimized positions and refined with a riding model. 351 Pa-
rameters were refined with no restraints. R1/wR2 [I Ͼ 2σ(I)] =
0.0553/0.1458. R1/wR2 [all reflections] = 0.0841/0.1566, S = 1.066.
Residual electron density is between –0.30 and 0.34 eÅ–3. Geome-
try calculations and the check for higher symmetry were performed
with the PLATON program.[28]
[9]
[10]
[11]
[12]
[13]
A. A. Cantrill, H. M. I. Osborn, J. Sweeney, Tetrahedron 1998,
54, 2181–2208.
a) O. Korpiun, R. A. Lewis, J. Chickos, K. Mislow, J. Am.
Chem. Soc. 1968, 90, 4842–4846; b) F. Fredoueil, M. Evain, D.
Massiot, M. Bujoli-Doeuff, B. Bujoli, J. Mater. Chem. 2001,
11, 1106–1110; c) M. Finke, H.-J. Kleiner, Justus Liebigs Ann.
Chem. 1974, 741–750.
A.-M. Caminade, F. El Khatib, A. Baceiredo, M. Koenig,
Phosphorus Sulfur 1987, 29, 365–367.
The mono-TMS adduct was prepared by following the same
procedure but by using TMSCl. However, desilylation was ob-
served upon purification by column chromatography on silica
gel.
a) R. M. Acheson, P. J. Ansell, J. R. Murray, J. Chem. Res. (M)
1986, 3001; R. M. Acheson, P. J. Ansell, J. R. Murray, J. Chem.
Res. (S) 1986, 378; b) S. G. Dutremez, C. Guerin, B. J. L.
Henner, V. Tomberli, Phosphorus Sulfur Silicon Relat. Elem.
2000, 160, 251–269.
CCDC-625927 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[14]
[15]
Supporting Information (see footnote on the first page of this arti-
cle): 13C NMR spectra for the new compounds and HRMS spectra
for macrocycles 15 and 16.
[16]
Acknowledgments
[17]
[18]
a) C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422–424; b) C.
Glaser, Justus Liebigs Ann. Chem. 1870, 154, 137–171.
a) G. Eglinton, A. R. Galbraith, Chem. Ind. (London) 1956,
737–738; b) O. M. Behr, G. Eglinton, A. R. Galbraith, R. A.
Raphael, J. Chem. Soc. 1960, 3614–3625.
This work was supported by the Council for Chemical Sciences of
the Netherlands Organization for Scientific Research (NWO/CW).
We thank Prof. L. T. Scott of Boston College for insightful infor-
mation.
Eur. J. Org. Chem. 2007, 2405–2412
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2411