Page 5 of 6
ACS Catalysis
1
2
3
4
5
6
7
8
9
B. U. W. Ruthenium-Catalyzed α-(Hetero)Arylation of Saturated
(8) For reviews, see: (a) Stephan, D. W.; Erker, G. Frustrated Lewis
Pairs: Metal-free Hydrogen Activation and More. Angew. Chem.,
Int. Ed. 2010, 49, 46–76; (b) Oestreich, M.; Hermeke, J.; Mohr,
J. A Unified Survey of Si–H and H–H Bond Activation Cata-
lysed by Electron-Deficient Boranes. Chem. Soc. Rev. 2015, 44,
2202–2220; (c) Stephan, D. W.; Erker, G. Frustrated Lewis Pair
Chemistry: Development and Perspectives. Angew. Chem., Int.
Ed. 2015, 54, 6400–6441; (d) Lawson, J. R.; Melen, R. L.
Tris(pentafluorophenyl)borane and Beyond: Modern Advances
in Borylation Chemistry. Inorg. Chem. 2017, 56, 8627–8643; (e)
Meng, W.; Feng, X.; Du, H. Frustrated Lewis Pairs Catalyzed
Asymmetric Metal-Free Hydrogenations and Hydrosilylations.
Acc. Chem. Res. 2018, 51, 191−201.
(9) For selected examples, see: (a) Chase, P. A.; Jurca, T.; Stephan,
D. W. Lewis Acid-Catalyzed Hydrogenation: B(C6F5)3-Medi-
ated Reduction of Imines and Nitriles with H2. Chem. Commun.
2008, 1701–1703; (b) Wang, H.; Fröhlich, R.; Kehr, G.; Erker,
G. Heterolytic Dihydrogen Activation with the 1,8-Bis(diphe-
nylphosphino)naphthalene/B(C6F5)3 Pair and Its Application for
Metal-Free Catalytic Hydrogenation of Silyl Enol Ethers. Chem.
Commun. 2008, 5966–5968; (c) Greb, L.; Ona-Burgos, P.;
Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Metal-
free Catalytic Olefin Hydrogenation: Low-Temperature H2 Acti-
vation by Frustrated Lewis Pairs. Angew. Chem., Int. Ed. 2012,
51, 10164–10168; (d) Mahdi, T.; Stephan, D. W. Enabling Cat-
alytic Ketone Hydrogenation by Frustrated Lewis Pairs. J. Am.
Chem. Soc. 2014, 136, 15809–15812; (e) Scott, D. J.; Fuchter, M.
J.; Ashley, A. E. Nonmetal Catalyzed Hydrogenation of Car-
bonyl Compounds. J. Am. Chem. Soc. 2014, 136, 15813–15816;
(f) Zhu, X.; Du, H. A Highly Stereoselective Metal-Free Hydro-
genation of Diimines for the Synthesis of Cis-Vicinal Diamines.
Org. Lett. 2015, 17, 3106–3109; (g) Zhang, Z.; Du, H. A Highly
cis-Selective and Enantioselective Metal-Free Hydrogenation of
2,3-Disubstituted Quinoxalines. Angew. Chem., Int. Ed. 2015, 54,
623–626.
(10) For selected examples, see: (a) Parks, D. J.; Piers, W. E.
Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aro-
matic Aldehydes, Ketones, and Esters. J. Am. Chem. Soc. 1996,
118, 9440–9441; (b) Rendler, S.; Oestreich, M. Conclusive Evi-
dence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hy-
drosilylation of Carbonyl Compounds: Implications for the Re-
lated Hydrogenation. Angew. Chem., Int. Ed. 2008, 47, 5997–
6000; (c) Mewald, M.; Oestreich, M. Illuminating the Mecha-
nism of the Borane-Catalyzed Hydrosilylation of Imines with
Both an Axially Chiral Borane and Silane. Chem. Eur. J. 2012,
18, 14079–14084; (d) Gandhamsetty, N.; Park, J.; Jeong, J.; Park,
S.-W.; Park, S.; Chang, S. Chemoselective Silylative Reduction
of Conjugated Nitriles under Metal-Free Catalytic Conditions: β-
Silyl Amines and Enamines. Angew. Chem., Int. Ed. 2015, 54,
6832–6836; (e) Kim, Y.; Chang, S. Borane-Catalyzed Reductive
α-Silylation of Conjugated Esters and Amides Leaving Carbonyl
Groups Intact. Angew. Chem., Int. Ed. 2016, 55, 218–222; (f)
Gandhamsetty, N.; Park, S.; Chang, S. Selective Silylative Re-
duction of Pyridines Leading to Structurally Diverse Azacyclic
Compounds with the Formation of sp3 C–Si Bonds. J. Am. Chem.
Soc. 2015, 137, 15176−15184; (g) Ma, Y.; Wang, B.; Zhang, L.;
Hou, Z. Boron-Catalyzed Aromatic C–H Bond Silylation with
Hydrosilanes. J. Am. Chem. Soc. 2016, 138, 3663–3666.
(11) For selected examples, see: (a) Farrell, J. M.; Heiden, Z. M.;
Stephan, D. W. Metal-Free Transfer Hydrogenation Catalysis by
B(C6F5)3. Organometallics 2011, 30, 4497–4500; (b) Greb, L.;
Tamke, S.; Paradies, J. Catalytic Metal-Free Si–N Cross-Dehy-
drocoupling. Chem. Commun. 2014, 50, 2318–2320; (c)
Chatterjee, I.; Oestreich, M. B(C6F5)3-Catalyzed Transfer Hydro-
genation of Imines and Related Heteroarenes Using Cyclohexa-
1,4-dienes as a Dihydrogen Source. Angew. Chem., Int. Ed. 2015,
54, 1965–1968; (d) Chatterjee, I.; Qu, Z.-W.; Grimme, S.; Oes-
treich, M. B(C6F5)3-Catalyzed Transfer of Dihydrogen from One
Unsaturated Hydrocarbon to Another. Angew. Chem., Int. Ed.
2015, 54, 12158–12162; (e) Zhou, Q.; Zhang, L.; Meng, W.;
Cyclic Amines: Reaction Scope and Mechanism. Chem. Eur. J.
2013, 19, 10378–10387; (d) Kawamorita, S.; Miyazaki, T.; Iwai,
T.; Ohmiya, H.; Sawamura, M. Rh-Catalyzed Borylation of N-
Adjacent C(sp3)–H Bonds with
a Silica-Supported Tri-
arylphosphine Ligand. J. Am. Chem. Soc. 2012, 134, 12924–
12927; (e) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Enantioselec-
tive Amine α-Functionalization via Palladium-Catalysed C–H
Arylation of Thioamides. Nat. Chem. 2017, 9, 140–144; (f) Tran,
A. T.; Yu, J.-Q. Practical Alkoxythiocarbonyl Auxiliaries for
Iridium(I)-Catalyzed C−H Alkylation of Azacycles. Angew.
Chem., Int. Ed. 2017, 56, 10530–10534.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) For selected examples of early transition-metal-catalyzed undi-
rected C–H activations with metallaaziridines as a key interme-
diate, see: (a) Herzon, S. B.; Hartwig, J. F. Direct, Catalytic Hy-
droaminoalkylation of Unactivated Olefins with N-Alkyl Aryla-
mines. J. Am. Chem. Soc. 2007, 129, 6690–6691; (b) Herzon, S.
B.; Hartwig, J. F. Hydroaminoalkylation of Unactivated Olefins
with Dialkylamines. J. Am. Chem. Soc. 2008, 130, 14940–14941;
(c) Eisenberger, P.; Ayinla, R. O.; Lauzon, J. M. P.; Schafer, L.
L. Tantalum–Amidate Complexes for the Hydroaminoalkylation
of Secondary Amines: Enhanced Substrate Scope and Enantiose-
lective Chiral Amine Synthesis. Angew. Chem., Int. Ed. 2009, 48,
8361–8365; (d) Garcia, P.; Lau, Y. Y.; Perry, M. R.; Schafer, L.
L. Phosphoramidate Tantalum Complexes for Room-Tempera-
ture C–H Functionalization: Hydroaminoalkylation Catalysis.
Angew. Chem., Int. Ed. 2013, 52, 9144–9148; (e) Chong, E.;
Brandt, J. W.; Schafer, L. L. 2-Pyridonate Tantalum Complexes
for the Intermolecular Hydroaminoalkylation of Sterically De-
manding Alkenes. J. Am. Chem. Soc. 2014, 136, 10898–10901;
(f) DiPucchio, R. C.; Roşca, S.-C.; Schafer, L. L. Catalytic and
Atom-Economic Csp3 –Csp3 Bond Formation: AlkylꢀTantalum
Ureates for Hydroaminoalkylation. Angew. Chem., Int. Ed. 2018,
57, 3469–3472.
(6) For selected examples, see: (a) Davies, H. M. L.; Hanse, T.; Hop-
per, D. W.; Panaro, S. A. Highly Regio-, Diastereo-, and Enanti-
oselective C−H Insertions of Methyl Aryldiazoacetates into Cy-
clic N-Boc-Protected Amines. Asymmetric Synthesis of
Novel C2-Symmetric Amines and threo-Methylphenidate. J. Am.
Chem. Soc. 1999, 121, 6509–6510; (b) Axten, J. M.; Ivy, R.;
Krim, L.; Winkler, J. D. Enantioselective Synthesis of D-threo-
Methylphenidate. J. Am. Chem. Soc. 1999, 121, 6511–6512; (c)
Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper, D.
W. New Strategic Reactions for Organic Synthesis:ꢀ Catalytic
Asymmetric C−H Activation α to Nitrogen as a Surrogate for the
Mannich Reaction. J. Am. Chem. Soc. 2003, 125, 6462–6468.
(7) For reviews, see: (a) Haibach, M. C.; Seidel, D. C–H Bond Func-
tionalization through Intramolecular Hydride Transfer Angew.
Chem., Int. Ed. 2014, 53, 5010–5036; (b) Peng, B.; Maulide, N.
The Redox-Neutral Approach to C–H Functionalization. Chem.
Eur. J. 2013, 19, 13274–13287; For selected examples, see: (c)
Pastine, S. J.; McQuaid, K. M.; Sames, D. Room Temperature
Hydroalkylation of Electron-Deficient Olefins:ꢀ sp3 C−H Func-
tionalization via a Lewis Acid-Catalyzed Intramolecular Redox
Event. J. Am. Chem. Soc. 2005, 127, 12180–12181; (d) Zhang,
C.; Murarka, S.; Seidel, D. Facile Formation of Cyclic Aminals
through a Brønsted Acid-Promoted Redox Process. J. Org. Chem.
2009, 74, 419–422; (e) Murarka, S.; Zhang, C.; Konieczynska,
M. D.; Seidel, D. Lewis Acid Catalyzed Formation of Tetrahy-
droquinolines via an Intramolecular Redox Process. Org. Lett.
2009, 11, 129–132; (f) Haibach, M. C.; Deb, I.; De, C. K.; Seidel,
D. Redox-Neutral Indole Annulation Cascades. J. Am. Chem.
Soc. 2011, 133, 2100–2103; (g) Jurberg, I. D.; Peng, B.; Woste-
feld, E.; Wasserloos, M.; Maulide, N. Intramolecular Redox-
Triggered C–H Functionalization. Angew. Chem., Int. Ed. 2012,
51, 1950–1953; (h) Zhou, G. H.; Zhang, J. L. Product-Selectivity
Control by the Nature of the Catalyst: Lewis Acid-Catalyzed Se-
lective Formation of Ring-Fused Tetrahydroquinolines and Tet-
rahydroazepines via Intramolecular Redox Reaction.
Chem.
Commun. 2010, 46, 6593–6595.
ACS Paragon Plus Environment