Paper
RSC Advances
generated using 3-21G/B3LYP basis sets respectively of fellowships. S. Adhikari acknowledges the SERB-DST (project
Gaussian 09 soware.35 In free AAS the HOMO lies in acridone no. SR/S1/OC-101/2012) for nancial support.
ring and the LUMO spreads over in the salicylaldehyde imine
part (Fig. S41†). On complexation the energy of individual
HOMO and LUMO decreases and the energy gap between the
highest occupied molecular orbital (HOMO) and lowest unoc-
Notes and references
cupied molecular orbital (LUMO) also decreases, thus there is
an increase in the stability of the whole system (Fig. S41†).
Hence, the observed red shi in the absorption spectra of
AAS–Zn2+ can be explained in the terms of decreased band gap
of HOMO and LUMO.
1 R. S. MacDonald, J. Nutr., 2000, 130, 1500S–1508S.
2 R. B. Franklin and L. C. Costello, J. Cell. Biochem., 2009, 106,
750–757.
3 E. L. Que, D. W. Domsille and C. J. Chang, Chem. Rev., 2008,
108, 1517–1549.
4 E. Cohen-Kr, W. Lee, S. Eskandari and N. Nelson, Proc. Natl.
Acad. Sci. U. S. A., 2005, 102, 6154–6159.
3.8 Cell culture study
´
5 V. Petkovic, M. C. Miletta, A. Eble, D. I. Iliev, G. Binder,
To further demonstrate the practical application of the probe, we
carried out experiments in living cells (detail in ESI†). AAS is very
efficient to detect intracellular Zn2+ in human breast cancer cell,
MCF7 and HeLa cells under normal and uorescence micro-
scope (Fig. 9). Incubation of cells with Zn2+ (50 mM) for 30 min. at
37 ꢂC was followed by the addition of AAS (10 mM) aer washing
three times with media and then was incubated further for
another 2 h. The enhancement of uorescence was observed
(Fig. 9). The results suggest that AAS can penetrate the cell
membrane and can be used for imaging of Zn2+ in living cells.
Furthermore, we have investigated the cell permeability of AAS
in presence and absence of an intracellular zinc chelator TPEN,
the results shows that AAS is cell permeable and can be used to
detect intracellular zinc ion concentration (Fig. S42, in ESI†). In
presence of TPEN, the uorescence of [AAS–Zn2+] completely
diminished due to the unavailability of Zn2+ ion in cells.
¨
C. E. Fluck and P. E. Mullis, Endocrinology, 2013, 154,
4215–4225.
6 W. Swardfager, N. Herrmann, G. Mazereeuw, K. Goldberger,
T. Harimoto and K. L. Lanctot, Biol. Psychiatry, 2013, 74, 872–
ˆ
878.
7 S. J. Lee and J. Y. Koh, Mol. Brain, 2010, 3, 30.
8 L. C. Costello, Y. Liu, J. Zou and R. B. Franklin, J. Biol. Chem.,
1999, 274, 17499–17504.
9 S. M. Henshall, D. E. H. Afar, K. K. Rasiah, L. G. Horvath,
K. Gish, I. Caras, V. Ramakrishnan, M. Wong, U. Jeffry and
J. G. Kench, Oncogene, 2003, 22, 6005–6012.
10 L. C. Costello, R. B. Franklin, P. Feng, M. Tan and O. Bagasra,
Cancer, Causes Control, 2005, 16, 901–915.
11 E. Ho and Y. Song, Curr. Opin. Clin. Nutr. Metab. Care, 2009,
12, 640–645.
12 A. S. Om and K. W. Chung, J. Nutr., 1996, 126, 842–848.
13 M. F. Leitzmann, M. J. Stampfer, K. Wu, G. A. Colditz,
W. C. Willett and E. L. Giovannucci, J. Natl. Cancer Inst.,
2003, 95, 1004–1007.
14 S. Y. Park, L. R. Wilkens, J. S. Morris, B. E. Henderson and
L. N. Kolonel, Prostate, 2013, 73, 261–266.
15 J. J. Hwang, H. N. Kim, J. Kim, D. H. Cho, M. J. Kim,
Y. S. Kim, Y. Kim, S. J. Park and J. Y. Koh, BioMetals, 2010,
23, 997–1013.
16 A. Sahana, A. Banerjee, S. Lohar, S. Panja,
S. K. Mukhopadhyay, J. S. Matalobos and D. Das, Chem.
Commun., 2013, 49, 7231–7233.
3.9 Cytotoxicity of AAS
Further, the cytotoxicity of AAS on MCF7 and HeLa cells was
determined by a conventional MTT assay (details in ESI,
Fig. S43†), which revealed that, upon exposure to a 10 mM
concentration of AAS (a concentration that was comparable to
that used for confocal imaging studies; Fig. 8) for 12 h, ꢁ90% of
the cells remained viable. This nullied the possibility of any
signicant cytotoxic inuence of the reagent AAS on HeLa cells.
Therefore, it may be concluded that AAS could be used as a
viable chemosensor for Zn2+ in biological samples.
17 T. Hirano, K. Kikuchi, Y. Urano, T. Higuchi and T. Nagano, J.
Am. Chem. Soc., 2000, 122, 12399–12400.
18 R. Weissleder, Nat. Biotechnol., 2001, 19, 316–317.
19 L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc.
Rev., 2013, 42, 622–661.
20 S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien and
S. J. Lippard, J. Am. Chem. Soc., 2001, 123, 7831–7841.
21 Z. Xu, X. Liu, J. Panb and D. R. Spring, Chem. Commun., 2012,
48, 4764–4766.
22 L. Xue, C. Liu and H. Jiang, Org. Lett., 2009, 11, 1655–1658.
23 S. Goswamia, S. Das, K. Aich, D. Sarkar and T. K. Mondal,
Tetrahedron Lett., 2013, 54, 6892–6896.
4. Conclusion
Thus, an acridone based probe generates solid state red uo-
rescence in presence of trace level Zn2+ having naked eye orange
color in presence of all the other cation and anion including
biologically important ones. Interference free detection of Zn2+
in real sample and live cells is possible. The polymeric red
emitting AAS–Zn2+ complex may be useful as optoelectronic
materials.
Acknowledgements
24 S. Goswami, A. K. Das, K. Aich, A. Manna, S. Maity, K. Khanra
and N. Bhattacharyya, Analyst, 2013, 138, 4593–4598.
Authors acknowledge Dr R. Banerjee (IICT, Hyderabad) for cell
imaging studies. A. Ghosh and S. Mandal are thankful to UGC, 25 S. Goswami, A. K. Das, B. Pakhira, S. B. Roy, A. K. Maity,
New Delhi and A. Sahana to CSIR, New Delhi for providing
P. Saha and S. Sarkar, Dalton Trans., 2014, 43, 12689–12697.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 33878–33884 | 33883