compared with those obtained in previous reports, highlighting
the outstanding selectivities of this protocol. With regard to
conventional heating processes, various reported results describe
conversions ranging from 40 to 95% in 7–48 h, most of them are
comparable to the catalytic activities obtained herein, with,
however, much reduced selectivities to cyclohexene oxide (infe-
rior to 90%).29
References
1 G. A. Ozin, A. Arsenault and L. Cademartiri, Nanochemistry.
Chemical Approach to Nanomaterials, RSC Publishing,
Cambridge, UK, 2nd edn, 2009.
A
2 M. S. Rigutto, R. Van Veen and L. Huve, Stud. Surf. Sci. Catal., 2007,
168, 837–854.
3 (a) G. Rothenberg, Catalysis. Concepts and Green Applications, Wiley-
VCH, Weinheim, Germany, 2008; (b) M. Hartmann, Chem. Mater.,
2005, 17, 4577–4593.
4 M. Vallet-Regi, F. Balas and D. Arcos, Angew. Chem., Int. Ed., 2007,
46, 7548–7558.
Investigation of the scope of the epoxidation reaction
5 M. Vallet-Regi, L. Ruiz-Gonzalez, I. Izquierdo-Barba and
J. M. Gonzalez-Calbet, J. Mater. Chem., 2006, 16, 26–31.
6 (a) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky,
J. Am. Chem. Soc., 1998, 120, 6024–6036; (b) D. Zhao, J. Feng,
Q. Huo, N. Melosh, G. H. Frederickson, B. F. Chmelka and
G. D. Stucky, Science, 1998, 279, 548–552.
Upon investigation of the activity of V-SBA-15 materials in the
epoxidation of cyclohexene, the scope of the protocol was further
extended to a range of alkenes as shown in Table 5 for both
conventional heating and microwave irradiation using V-20-O as
catalyst.
7 S. K. Badamali, R. Luque, J. H. Clark and S. W. Breeden, Catal.
Commun., 2009, 10, 1010–1013.
Blank reactions gave conversions inferior to 9% after 24 and
1 h reaction under conventional heating and microwave irradi-
ation, respectively. Promisingly, the protocol was found to be
amenable to both cyclic and linear alkenes, providing good to
excellent conversions of starting material (e.g. 94% conversion of
cyclooctene, >99% selectivity to the epoxide after 15 min
microwave irradiation and a TOF of 1000 hꢁ1, Table 5, entry 3)
with once again complete selectivities to the epoxidation product
in all cases. An increase in TON and TOF values was observed
with increasing the size of the ring containing the double bond
(from cyclohexene to cyclooctene). Reduced activities were
found for the particular case of less activated substrates (e.g.
linear alkenes), with conversions around 70–80% and average
TON values of 200 (Table 5, entries 4 and 5).
8 (a) X. Liu, A. Wang, X. Wang, C. Y. Mou and T. Zhang, Chem.
Commun., 2008, 3187–3189; (b) Sujandi, E. A. Prasetjanto and
S. E. Park, Appl. Catal., A, 2008, 350, 244–251.
9 (a) Y. Li, H. Xia, F. Fan, Z. Feng, R. A. Van Santen, E. J. M. Hensen
and C. Li, Chem. Commun., 2008, 774–776; (b) H. Li, W. Chai, F. Zhang
and J. Chen, Green Chem., 2007, 9, 1223–1228; (c) H. Liu, H. Wang,
J. Shen, Y. Sun and Z. Liu, Catal. Today, 2008, 131, 444–449.
10 M. J. Gracia, E. Losada, R. Luque, J. M. Campelo, D. Luna,
J. M. Marinas and A. A. Romero, Appl. Catal., A, 2008, 349, 148–155.
11 (a) F. Li., F. Yu, Y. Li, R. Li and K. Xie, Microporous Mesoporous
Mater., 2007, 101, 250–255; (b) B. L. Newalkar, J. Olanrewaju and
S. Komarneni, J. Phys. Chem. B, 2001, 105, 8356–8360.
12 (a) J. Iglesias, J. A. Melero and J. Sainz-Pardo, J. Mol. Catal.
A: Chem., 2008, 291, 43–53; (b) A. Vinu, P. Srinivasu, M. Miyahara
and K. Ariga, J. Phys. Chem. B, 2006, 110, 801–806.
13 G. J. Hutchings, J. Mater. Chem., 2009, 19, 1222–1235.
14 Methods and Reagents for Green Chemistry, ed. P. Tundo, A. Perosa
and F. Zecchini, John Wiley & Sons, Hoboken, NJ, 2007.
15 R. Luque, S. K. Badamali, J. H. Clark, M. Fleming and
D. J. Macquarrie, Appl. Catal., A, 2008, 341, 154–159.
Most importantly, the active and stable mesoporous V-SBA-
15 could be easily recovered and reused in the epoxidation
reaction without significantly losing their initial activity after
3 cycles.
16 C. O. Kappe, Chem. Soc. Rev., 2008, 37, 1127–1139.
17 (a) F. M. Bautista, J. M. Campelo, D. Luna, J. Luque, J. M. Marinas
and M. T. Siles, Chem. Eng. J. (Amsterdam, Neth.), 2006, 120, 3–9;
(b) R. K. Jha, S. Shylesh, S. S. Bhoware and A. P. Singh,
Microporous Mesoporous Mater., 2006, 95, 154–163.
Conclusions
~
ꢀ
18 (a) M. L. Pena, A. Dejoz, V. Fornes, F. Rey, M. I. Vazquez and
J. M. Lopez-Nieto, Appl. Catal., A, 2001, 209, 155–164; (b)
J. George, S. Shylesh and A. P. Singh, Appl. Catal., A, 2005, 290,
148–158.
Mesoporous V-SBA-15 was synthesised using different vana-
dium precursors. Materials were found to be highly mesoporous,
with developed macroporosity at increasing V contents in the
solids. The catalytic activity of V-SBA-15 was subsequently
investigated in the epoxidation of a range of cyclic and linear
alkenes under both conventional heating and microwave irradi-
ation. Results proved that the materials were very active and
selective to the formation of the respective epoxides, with
remarkably reduced times of reaction under microwave irradia-
tion (0.25–1 h) compared to those needed under conventional
heating (24 h+) to achieve comparable conversion values.
Materials could be also recovered upon reaction completion and
reused at least 3 times with almost complete preservation of the
initial activity. We envisage our materials will be employed in
many oxidation processes in the future and further research is
already ongoing in our laboratories.
19 P. Selvam and S. E. Dapurkar, J. Catal., 2005, 229, 64–71.
20 C. C. Chusuei, M. A. Brookshier and D. W. Goodman, Langmuir,
1999, 15, 2806–2808.
21 (a) G. Xiong, C. Li, Q. Xin and Z. Feng, Chem. Commun., 2000,
677–678; (b) C. Hess, J. D. Hoefelmeyer and T. D. Tilley, J. Phys.
Chem. B, 2004, 108, 9703–9709.
22 T. Tsoncheva, L. Ivanova, R. Dimitrova and J. Rosenholm, J. Colloid
Interface Sci., 2008, 321, 342–349 and references therein.
23 H. Tian, E. I. Ross and I. E. Wachs, J. Phys. Chem. B, 2006, 110,
9593–9600.
24 M. A. Eberhardt, A. Prcotor, M. Houalla and D. M. Hercules,
J. Catal., 1996, 160, 27–34.
25 J. Nickl, Ch. Schild, A. Baiker, M. Hund and A. Woukam, Fresenius’
J. Anal. Chem., 1993, 346, 79–83.
26 D. A. Pawlak, M. Ito, M. Oku, K. Shimamura and T. Fukuda,
J. Phys. Chem. B, 2002, 106, 504–507.
27 A. Baiker, P. Dollenmeier, M. Glinski, A. Reller and V. K. Sharma,
J. Catal., 1988, 111, 273–285.
28 K. Walczak and I. Nowak, Catal. Today, 2009, 142, 293–297.
29 (a) S. Mukerjee, S. Samanta, A. Bhaumik and B. C. Ray, Appl. Catal.,
B, 2006, 68, 12–20; (b) E. M. Serwicka, J. Poltowicz, K. Bahranowski,
Z. Olejniczak and W. Jones, Appl. Catal., A, 2004, 275, 9–14; (c)
O. A. Kholdeeva, T. A. Trubitsina, M. N. Timofeeva,
G. M. Maksimov, R. I. Maksimovskaya and V. A. Rogov, J. Mol.
Catal. A: Chem., 2005, 232, 173–178; (d) Sujandi, S. C. Han,
D. S. Han, M. J. Jin and S. E. Park, J. Catal., 2006, 243, 410–419.
Acknowledgements
Authors greatly acknowledge funds from Ministerio de Ciencia e
ꢀ
Innovacion (Projects CTQ2007-65754/PPQ and CTQ2008-
01330) and Junta de Andalucia (P07-FQM-02695), cofinanced
with FEDER funds.
This journal is ª The Royal Society of Chemistry 2009
J. Mater. Chem., 2009, 19, 8603–8609 | 8609