RSC Advances
Communication
The authors acknowledge the nancial support from the
National Natural Science Foundation of China (no. 31271617)
and China Postdoctoral Science Foundation (no. 2012M521177).
Notes and references
1 T. Torimoto, T. Tsuda, K. Okazaki and S. Kuwabata, Adv.
Mater., 2010, 22, 1196; M. Petkovic, K. R. Seddon,
L. P. N. Rebelo and C. S. Pereira, Chem. Soc. Rev., 2011, 40,
1383; T. Fuchigami and S. Inagi, Chem. Commun., 2011, 47,
10211.
2 S. K. Tang, G. A. Baker and H. Zhao, Chem. Soc. Rev., 2012, 41,
4030; S. G. Lee, Chem. Commun., 2006, 2066; R. Giernoth,
Angew. Chem., Int. Ed., 2010, 49, 2834.
Fig. 2 EMF measurements recorded for increasing the concentration of K+ in the
solution. Inset: calibration curve of the GCE/TSIL/K-ISM, conditioned in 0.1 M KCl
solution.
3 C. E. Song, Chem. Commun., 2004, 1033; Z. Ma, J. H. Yu and
S. Dai, Adv. Mater., 2010, 22, 261; J. S. Lee, X. Q. Wang,
H. M. Luo, G. A. Baker and S. Dai, J. Am. Chem. Soc., 2009,
131, 4596; W. Chen, Y. Y. Zhang, L. B. Zhu, J. B. Lan,
R. G. Xie and J. S. You, J. Am. Chem. Soc., 2007, 129, 13879.
4 E. Bakker and E. Pretsch, TrAC, Trends Anal. Chem., 2001, 20,
11; A. Bratov, N. Abramova and A. Ipatov, Anal. Chim. Acta,
2010, 678, 149; R. De Marco, G. Clarke and B. Pejcic,
Electroanalysis, 2007, 19, 1987.
5 J. Bobacka, A. Ivaska and A. Lewenstam, Chem. Rev., 2008,
108, 329; E. Pretsch, TrAC, Trends Anal. Chem., 2007, 26, 46;
A. Michalska, Electroanalysis, 2012, 24, 1253.
6 P. C. Si, Q. J. Chi, Z. S. Li, J. Ulstrup, P. J. Møller and
J. Mortensen, J. Am. Chem. Soc., 2007, 129, 3888;
J. P. Veder, R. De Marco, G. Clarke, R. Chester, A. Nelson,
K. Prince, E. Pretsch and E. Bakker, Anal. Chem., 2008, 80,
insensitive to gas (O2 and CO2), conrming the absence of water
layer at the TSIL|K-ISM interface. This property was much
superior to the conductive polymers-based SC-ISE, since the
conductive polymers may react with the O2 in water layer
resulted in the potential dri.7,8 These demonstrate that aniline-
functionalized TSIL lm could act as a well-performed trans-
ducer in potentiometric sensors.
The potentiometric characterization of the developed SC-ISE
was examined by measuring the electromotive force (EMF) value
in KCl solution with different concentrations. Fig. 2 displays the
dynamic potentiometric response of the electrode recorded as a
function of time at increasing the concentration of K+. As
shown, the response is much faster (less than 13 s). Such a
response time is much shorter than those of electrodes that
contain a similar membrane but with liquid contact, indicating
the presence of TSIL transducer promotes the response time of
the SC-ISE. Furthermore, the response was almost Nernstian
displaying a slope of 58.8 mV per decade (standard deviation of
the slope is 0.4 mV per decade, R ¼ 0.9991) and a linear range
from 10ꢁ5.8 to 10ꢁ1.6 M K+ (inset of Fig. 2). The limit of detection
calculated as the intersection of the two slope lines was 10ꢁ6.1
M. The selectivity of the electrode was determined using the
separated solution method. As summarized in Table S1 (ESI†),
the selectivity coefficients were comparable to their liquid-
contact electrode counterparts, nevertheless our electrodes are
highly sensitive, stable and easy to be prepared.
In conclusion, an aniline-functionalized TSIL was rstly
synthesized and further employed to fabricate high-perfor-
mance potentiometric devices. Due to the high redox capaci-
tance of the TSIL lm, the developed potentiometric sensor
shows high potential stability. Furthermore, with the high
hydrophobic character of TSIL materials, no water lm was
formed between the ion-selective membrane and the underlying
solid-contact layer. This work provides a useful avenue for
´
6731; A. Kisiel, M. Mazur, S. Kusnieruk, K. Kijewska,
´
P. Krysinski and A. Michalska, Electrochem. Commun., 2010,
12, 1568.
7 J. Bobacka, Anal. Chem., 1999, 71, 4932; T. Lindfors, J. Solid
State Electrochem., 2009, 13, 77; T. V. Shishkanova,
ˇ
´
´
´
P. Matĕjka, V. Kral, I. Sedĕnkova, M. Trchova and
J. Stejskal, Anal. Chim. Acta, 2008, 624, 238; M. Fibbioli,
K. Bandyopadhyay, S. G. Liu, L. Echegoyen, O. Enger,
¨
F. Diederich, P. Buhlmann and E. Pretsch, Chem.
Commun., 2000, 339.
8 M. Fouskaki and N. Chaniotakis, Analyst, 2008, 133, 1072;
G. A. Crespo, S. Macho and F. X. Rius, Anal. Chem., 2008,
´
¨
¨
80, 1316; G. A. Zelada-Guillen, J. Riu, A. Duzgun and
F. X. Rius, Angew. Chem., Int. Ed., 2009, 48, 7334; J. F. Ping,
Y. X. Wang, Y. B. Yin and J. Wu, Anal. Chem., 2012, 84, 3473.
9 E. J. Parra, P. Blondeau, G. A. Crespo and F. X. Rius, Chem.
Commun., 2011, 47, 2438; Z. Mousavi, A. Teter,
A. Lewenstam, M. Maj-Zurawska, A. Ivaska and J. Bobacka,
Electroanalysis, 2011, 23, 1352; Z. Mousavi, J. Bobacka,
A. Lewenstam and A. Ivaska, J. Electroanal. Chem., 2009,
633, 246.
implementing TSIL as a new generation of ion-to-electron 10 T. Lindfors and A. Ivaska, Anal. Chem., 2004, 76, 4387;
transducer in SC-ISEs, which could expand the scope of TSIL
constructed sensing devices and hold great promise for routine
sensing applications.
H. Karami and M. F. Mousavi, Talanta, 2004, 63, 743;
T. Lindfors, H. Aarnio and A. Ivaska, Anal. Chem., 2007, 79,
8571.
19784 | RSC Adv., 2013, 3, 19782–19784
This journal is ª The Royal Society of Chemistry 2013