R. J. White et al. / Tetrahedron Letters 51 (2010) 800–803
803
O
Peptide
NH2
O
NH
O
OH
O
OH
O
OH
O
OH
O
O
OH
O
HO
O
HO
O
HO
OH
OH
O
O
O
a, b, c, d, e
O
OH
OH
OH
5
O
HO
H2N
O
a, b, c, d, e
5
NH
8
7
O
O
Peptide
Peptide
O
NH2
NH
O
NH
O
OH
O
NH2
O
OH
a, b, c, d, e
O
O
O
O
O
O
OH
OH
OH
O
O
O
OH
OH
OH
O
O
O
OH
OH
OH
5
OH
OH
OH
5
1
0
9
Scheme 3. Peptide synthesis using bifunctionalized b-cyclodextrin, 7. Reagents and conditions: (a) Rink resin (0.073 mmol/g), DMF, 3 h; (b) 20% piperidine in DMF,
ꢀ 10 min; (c) amino acid (4 equiv), TBTU (4 equiv), HOBt (4 equiv), DIEA (8 equiv) in DMF, rt, overnight or 7 (4 equiv), EDC (4 equiv), DIEA (8 equiv), py/DMF, rt overnight;
d) DMF; (e) TFA (30%), CH Cl , rt, 30–60 min, 21% (for 8), 15% (for 9), 3% (for 10) where the peptide is Ala-Gly.
2
(
2
2
tetrafluoroborate) and DIEA (diisopropylethylamine) in DMF in
excess], resulting in pure 21% (10.4 mg) and 15% (7.4 mg) yields
for 8 and 9, respectively (Scheme 3). The pure products were char-
acterized by HR-MS. The attachment of 7 at both the C- and N-ter-
mini of a peptide was also achieved (Scheme 3) using the same
reaction conditions producing 10 in a pure 3% (2.4 mg) yield as
confirmed by LR-MS (MALDI-TOF).
Supplementary data
References and notes
1.
Challa, R.; Ahuja, A.; Javed, A.; Khar, R. K. A. A. P. S. PharmSciTech 2005, 6, E329–E357.
We have demonstrated a unique, versatile and robust method
for the bifunctionalization of b-CD. It was interesting to note that
a 1:2:2 ratio for the (AB/AG):(AC/AF):(AD/AE) isomers for the
bifunctional cyclodextrin complex 5 was obtained indicating a ste-
ric preference in the overall complex. Isomer separation was
achieved using RP-HPLC with characterization by ESI-MS studies.
Furthermore, the attachment of peptides selectively to either the
C- and/or N-terminus using Fmoc SPPS has been demonstrated.
This system has great potential for the transportation of drugs
and/or other molecules, especially as CD is reported as being bio-
2
. Khan, A. R.; Forgo, P.; Stine, K. J.; D’Souza, V. T. Chem. Rev. 1998, 98, 1977–1996.
3. Tabushi, I.; Nabeshima, T.; Kitaguchi, H.; Yamamura, K. J. Am. Chem. Soc. 1982,
104, 2017–2019.
4.
5.
6.
Sollogoub, M. Eur. J. Org. Chem. 2009, 1295–1303.
Guieu, S.; Sollogoub, M. Angew. Chem., Int. Ed. 2008, 120, 7168–7171.
Muhanna, A. M. A.; Ortiz-Salmeron, E.; Garcia-Fuentes, L.; Gimenez-Martinez, J.
J.; Vargas-Berenguel, A. Tetrahedron Lett. 2003, 44, 6125–6128.
Pean, C.; Creminon, C.; Wijkhuisen, A.; Grassi, J.; Guenot, P.; Jehan, P.; Dalbiez,
J.-P.; Perly, B.; Djedaini-Pilard, F. J. Chem. Soc., Perkin Trans. 2 2000, 853–863.
Yu, H.; Makino, Y.; Fukudome, M.; Xie, R.-G.; Yuan, D.-Q.; Fujita, K. Tetrahedron
Lett. 2007, 48, 3267–3271.
7.
8.
9.
Dodziuk, H.; Demchuk, O. M.; Schilf, W.; Dolgonos, G. J. Mol. Struct. 2004, 693,
145–151.
1
,2,6,7
compatible.
Studies are continuing into the attachment and
10. Tsutsumi, H.; Ikeda, H.; Mihara, H.; Ueno, A. Bioorg. Med. Chem. Lett. 2004, 14,
analysis of potential bioactive peptidyl-cyclodextrin complexes
for their potential use in drug transportation and delivery.
723–726.
1
1
1. Byun, H.-S.; Zhong, N.; Bittman, R. Org. Synth. 2000, 77, 225–230.
2. Chan, W. C.; White, P. D. Fmoc Solid Phase Peptide Synthesis: A Practical
Approach; Oxford University Press: New York, 2002.
Acknowledgements
13. Schaschke, N.; Musiol, H.-J.; Assfalg-Machleidt, I.; Machleidt, W.; Moroder, L.
Bioorg. Med. Chem. Lett. 1997, 7, 2507–2512.
1
4. Sforza, S.; Galaverna, G.; Corradini, R.; Dossena, A.; Marchelli, R. J. Am. Chem.
This work was supported by grants from Massey University and
the Marsden Fund (RSNZ). R.J.W. thanks Massey University for a
Vice Chancellor’s scholarship.
Soc. 2003, 14, 124–135.
15. Ashton, P. R.; Koeniger, R.; Stoddart, J. F.; Alker, D.; Harding, V. D. J. Org. Chem.
1996, 61, 903–908.